Ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) for time-dependent profiling of raw and steamed Panax notoginseng.

来自 PUBMED

作者:

Toh DFNew LSKoh HLChan EC

展开

摘要:

The metabolic profiles of Panax notoginseng and its associated therapeutic values are critically affected by the duration of steaming. The time-dependent steaming effect of P. notoginseng is not well-characterized and there is also no official guideline on its duration of steaming. In this paper, a UHPLC/TOFMS-based metabolomic platform was developed for the qualitative profiling of multiparametric metabolic changes of raw P. notoginseng during the steaming process. Our method was successful in discriminating the differentially processed herbs. Both the unsupervised principal component analysis (PCA) score plot (R(2)X=0.664, Q(2) (cum)=0.622, and PCs=2) and the supervised partial least square-data analysis (PLS-DA) model (R(2)X=0.708, R(2)Y=0.461, and Q(2)Y=0.271) demonstrated strong classification and clear trajectory patterns with regard to the duration of steaming. The PLS-DA model was validated for its robustness via a prediction set, confirming that the UHPLC/TOFMS metabolic profiles of the raw and differentially steamed P. notoginseng samples were highly reproducible. Based on our method, the minimum durations of steaming for the maximum production of bioactive ginsenosides such as Rg3 and Rh2 were also predicted. Our novel time-dependent metabolic profiling approach represents the paradigm shift in the quality control of P. notoginseng products.

收起

展开

DOI:

10.1016/j.jpba.2009.12.005

被引量:

25

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(272)

参考文献(0)

引证文献(25)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读