I(Ks) restricts excessive beat-to-beat variability of repolarization during beta-adrenergic receptor stimulation.
摘要:
In vivo studies have suggested that increased beat-to-beat variability of ventricular repolarization duration (BVR) is a better predictor of drug-induced torsades de pointes than repolarization prolongation alone. Cellular BVR and its dynamics before proarrhythmic events are poorly understood. We investigated differential responses of BVR in single myocytes during I(Ks) blockade versus I(Kr) blockade and late-I(Na) augmentation, under the influence of beta-adrenergic receptor stimulation. Transmembrane action potentials were recorded from isolated canine left-ventricular midmyocytes at various pacing rates. I(Ks) was blocked by HMR1556, I(Kr) by dofetilide. Late I(Na) was augmented by sea anemone toxin-II. Isoproterenol was added for beta-adrenergic receptor stimulation. BAPTA-AM buffered intracellular Ca(2+). SEA0400 partially inhibited the Na(+)-Ca(2+) exchanger. BVR was quantified as variability of action-potential duration at 90% repolarization: Sigma(|APD90; i+1 minus APD90; i|)/[nbeatsx radical2] for 30 consecutive action potentials. Baseline BVR was significantly increased by I(Kr) blockade and late-I(Na) augmentation, especially at slow pacing rates. beta-adrenergic stimulation restabilized these BVR changes. In contrast, I(Ks) blockade caused very little change in repolarization when compared to baseline conditions, but predisposed the myocyte to increased BVR during beta-adrenergic stimulation, especially at fast rates. BAPTA-AM and SEA0400 reduced this excessive BVR and eliminated early afterdepolarizations. In conclusion, beta-adrenergic receptor stimulation exaggerates BVR during I(Ks) blockade, indicating a BVR-stabilizing role of beta-adrenergic-sensitive I(Ks). Loss of I(Ks) plus overriding of Ca(2+)-dependent membrane currents, including inward Na(+)-Ca(2)(+) exchange current, conspire to proarrhythmic BVR under these conditions.
收起
展开
DOI:
10.1016/j.yjmcc.2009.08.033
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(309)
参考文献(0)
引证文献(27)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无