Development of a Pefloxacin Disk Diffusion Method for Detection of Fluoroquinolone-Resistant Salmonella enterica.
Fluoroquinolones (FQs) are among the drugs of choice for treatment of Salmonella infections. However, fluoroquinolone resistance is increasing in Salmonella due to chromosomal mutations in the quinolone resistance-determining regions (QRDRs) of the topoisomerase genes gyrA, gyrB, parC, and parE and/or plasmid-mediated quinolone resistance (PMQR) mechanisms including qnr variants, aac(6')-Ib-cr, qepA, and oqxAB. Some of these mutations cause only subtle increases in the MIC, i.e., MICs ranging from 0.12 to 0.25 mg/liter for ciprofloxacin (just above the wild-type MIC of ≤0.06 mg/liter). These isolates are difficult to detect with standard ciprofloxacin disk diffusion, and plasmid-mediated resistance, such as qnr, is often not detected by the nalidixic acid screen test. We evaluated 16 quinolone/fluoroquinolone disks for their ability to detect low-level-resistant Salmonella enterica isolates that are not serotype Typhi. A total of 153 Salmonella isolates characterized for the presence (n = 104) or absence (n = 49) of gyrA and/or parC topoisomerase mutations, qnrA, qnrB, qnrD, qnrS, aac(6')-Ib-cr, or qepA genes were investigated. All isolates were MIC tested by broth microdilution against ciprofloxacin, levofloxacin, and ofloxacin and by disk diffusion using EUCAST or CLSI methodology. MIC determination correctly categorized all isolates as either wild-type isolates (MIC of ≤0.06 mg/liter and absence of resistance genes) or non-wild-type isolates (MIC of >0.06 mg/liter and presence of a resistance gene). Disk diffusion using these antibiotics and nalidixic acid failed to detect some low-level-resistant isolates, whereas the 5-μg pefloxacin disk correctly identified all resistant isolates. However, pefloxacin will not detect isolates having aac(6')-Ib-cr as the only resistance determinant. The pefloxacin disk assay was approved and implemented by EUCAST (in 2014) and CLSI (in 2015).
Skov R
,Matuschek E
,Sjölund-Karlsson M
,Åhman J
,Petersen A
,Stegger M
,Torpdahl M
,Kahlmeter G
... -
《-》
Characterization of quinolone resistance in Salmonella enterica serovar Indiana from chickens in China.
The aim of this study was to characterize the quinolone resistance of Salmonella enterica serovar Indiana isolated from chickens in China. A total of 293 Salmonella strains were isolated from chicken farms and slaughterhouses in Shandong province of China, and 130 (44.4%) were characterized as Salmonella enterica Indiana (chicken farms, n=52 strains; slaughter houses, n=78 strains). All isolate serotypes were tested with the Kauffmann-White classification system and examined for susceptibility to the quinolones: nalidixic acid, enrofloxacin, norfloxacin, and ciprofloxacin. The resistance of the Salmonella Indiana strains to nalidixic acid, enrofloxacin, norfloxacin, and ciprofloxacin were 100, 73.1, 71.2, and 82.7%, and 100, 59.0, 79.5, and 80.2%, respectively. Selected quinolone resistant strains were evaluated for mutations in genes (gyrA, gyrB, parC, and marA) by DNA sequencing. The gyrA mutation was found in all isolates, the parC mutation was only found in some isolates, and the gyrB and marA mutations were not observed. Quinolone resistance was evaluated in the representative isolates by screening for the quinolone resistance determinants, qnrA, qnrB, qnrS, qepA, and aac (6 ')-Ib-cr using PCR technology. The quinolone resistance determinants in Salmonella, qnrA, qnrB, qnrS, and qepA were negative by PCR, but aac(6 ')-Ib-cr had high detection rates of 90.4 and 96.2% in chicken farms and slaughterhouses, respectively. Salmonella Indiana containing the gyrA mutation was prevalent in farms and slaughterhouses and possessed a high frequency of the quinolone resistance determinant aac(6 ')-Ib-cr. These bacteria may have originated from the same source.
Lu Y
,Zhao H
,Liu Y
,Zhou X
,Wang J
,Liu T
,Beier RC
,Hou X
... -
《-》
An insight into selection specificity of quinolone resistance determinants within Enterobacteriaceae family.
Quinolone antimicrobials are frequently misused due to self-medication and suboptimal dose administration, leading to the development of resistance as well as treatment failure. The present study aimed to characterise plasmid-mediated quinolone resistance (PMQR) determinants and their genetic selection in the presence of quinolone stress within members of the Enterobacteriaceae.
A total of 209 non-duplicate Enterobacteriaceae isolates were collected from hospital and community health centres over the period July 2013-June 2014. Molecular characterisation of phenotypically screened quinolone-resistant isolates was done by multiplex PCR. Plasmids bearing the qnr and aac(6')-Ib-cr genes were transformed into Escherichia coli DH5α and were selected on Muller-Hinton agar plates containing 0.25μg/mL and 0.5μg/mL ciprofloxacin, norfloxacin, ofloxacin, levofloxacin and moxifloxacin. Conjugation experiments were performed to determine whether the aac(6')-Ib-cr- and qnr-carrying plasmids were self-transferable.
The transformation assay revealed that transformants carrying qnrA could be selected in media containing norfloxacin, ciprofloxacin and levofloxacin, whereas qnrB and aac(6')-Ib-cr were selected on media containing norfloxacin and ciprofloxacin. Transformed qnrD could be selected in media containing norfloxacin and ofloxacin, and qnrS was selected only in the presence of levofloxacin.
The presence of qnr genes has been associated with an increase in quinolone minimum inhibitory concentrations (MICs) and therefore leads to treatment failure when quinolones are used as selective therapeutic drugs. Since PMQR determinants have a high prevalence, effective measures should be taken and surveillance should be performed in order to avoid treatment failures using this group of antimicrobials.
Dasgupta N
,Paul D
,Dhar Chanda D
,Ingti B
,Bhattacharjee D
,Chakravarty A
,Bhattacharjee A
... -
《-》