Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin.
摘要:
This experiment pertains to the protective role of naringenin against cadmium (Cd)-induced oxidative stress in the liver of rats. Cadmium is a major environmental pollutant and is known for its wide toxic manifestations. Naringenin is a naturally occurring citrus flavonone which has been reported to have a wide range of pharmacological properties. In the present investigation cadmium (5mg/kg) was administered orally for 4 weeks to induce hepatotoxicity. Liver damage induced by cadmium was clearly shown by the increased activities of serum hepatic marker enzymes namely aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma glutamyl transferase (GGT) and serum total bilirubin (TB) along with the increased level of lipid peroxidation indices (thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxides) and protein carbonyl contents in liver. The toxic effect of cadmium was also indicated by significantly decreased levels of enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST)) and non-enzymatic antioxidants (reduced glutathione (GSH), vitamin C and vitamin E). Administration of naringenin at a dose of (50mg/kg) significantly reversed the activities of serum hepatic marker enzymes to their near-normal levels when compared to Cd-treated rats. In addition, naringenin significantly reduced lipid peroxidation and restored the levels of antioxidant defense in the liver. The histopathological studies in the liver of rats also showed that naringenin (50mg/kg) markedly reduced the toxicity of cadmium and preserved the normal histological architecture of the tissue. The present study suggested that naringenin may be beneficial in ameliorating the cadmium-induced oxidative damage in the liver of rats.
收起
展开
DOI:
10.1016/j.etp.2009.03.010
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(855)
参考文献(0)
引证文献(101)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无