Histochemical detection of ischemia-like alterations induced in kidney tissue in vitro--different sensitivity to oxidant stress of glomerular ENTPD1 versus E5NT.

来自 PUBMED

作者:

Vlaar APvan Son WJBakker WW

展开

摘要:

The expression of ENTPD1 (ecto-nucleoside triphosphate diphosphohydrolase) along the glomerular microvasculature of the kidney is downregulated in ischemic conditions, in contrast to E5NT (ecto-5'-nucleotidase), which may explain the increased tendency for intraglomerular microthrombus formation in vivo. It has been suggested that in ischemia, reactive oxygen species (ROS) affect glomerular ENTPD1, whereas E5NT seems less sensitive to oxidant stress. To test this hypothesis, a soluble ATP and ADP hydrolyzing enzyme solution (apyrase) [0.4 U/ml] or 5'-nucleotidase solution [0.33 U/ml] as well renal tissue were exposed to ROS, generated by gamma-irradiation in vitro. The enzymes diluted in distilled water or cryostat rat kidney sections were exposed to gamma-irradiation (0.037 Gy/s) for 0, 2, 5, 10, or 15 min, with or without supplementation of the ROS scavenger dimethylsulfoxide (DMSO). The enzyme activity of the samples was biochemically tested using standard methods, before and after irradiation. The reaction product of irradiated versus nonirradiated kidney sections was semiquantitatively evaluated after histochemical staining for either glomerular ENTPD1 or glomerular E5NT expression. The results show that the enzyme activity in samples of soluble apyrase was significantly decreased after irradiation. This effect was inhibited by DMSO. In contrast, 5'-nucleotidase activity showed only a limited decline of the activity curve after irradiation, which could also be restored following supplementation of DMSO. Glomerular ENTPD1 expression showed significant decrease after irradiation of kidney sections; again, this was inhibitable by DMSO. Glomerular E5NT activity was not altered by irradiation and DMSO supplementation did not affect its activity. It is concluded that soluble apyrase as well as the glomerular ENTPD1 are sensitive to oxidant stress, which may explain their downregulation in the ischemic condition in vivo. However, soluble 5'-nucleotidase and E5NT seem much less sensitive to ROS. This relative insensitivity of E5NT to oxidant injury may counteract ischemic injury by promoting local generation of adenosine in the ischemic micro-environment.

收起

展开

DOI:

10.1159/000183178

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(120)

参考文献(0)

引证文献(2)

来源期刊

Nephron Physiology

影响因子:0

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读