Loss of NECL1, a novel tumor suppressor, can be restored in glioma by HDAC inhibitor-Trichostatin A through Sp1 binding site.

来自 PUBMED

作者:

Gao JChen TLiu JLiu WHu GGuo XYin BGong YZhao JQiang BYuan JPeng X

展开

摘要:

Nectin-like molecule 1 (NECL1)/CADM3/IGSF4B/TSLL1/SynCAM3 is a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule downregulated at the mRNA level in 12 human glioma cell lines. Here we found that the expression of NECL1 was lost in six glioma cell lines and 15 primary glioma tissues at both RNA and protein levels. Re-expression of NECL1 into glioma cell line U251 would repress cell proliferation in vitro by inducing cell cycle arrest. And also NECL1 could decrease the growth rate of tumors in nude mice in vivo. To further investigate the mechanism why NECL1 was silenced in glioma, the basic promoter region located at -271 to +81 in NECL1 genomic sequence was determined. DNA bisulfite sequencing was performed to study the methylation status of CpG islands in NECL1 promoter; however, no hypermethylated CpG site was found. Additionally, the activity of histone deacetylase (HDACs) in glioma was higher than that in normal brain tissues, and the expression of NECL1 in glioma cell lines could be reactivated by HDACs inhibitor-Trichostatin A (TSA). So the loss of NECL1 in glioma was at least partly caused by histone deacetylation. Luciferase reporter assays, chromatin immunoprecipitation and co-immunoprecipitation (co-IP) assays indicated that Sp1 played an important role in this process by binding to either HDAC1 in untreated glioma cells or p300/CBP in TSA treated cells. Our finding suggests that NECL1 may act as a tumor suppressor in glioma and loss of it in glioma may be caused by histone deacetylation.

收起

展开

DOI:

10.1002/glia.20823

被引量:

24

年份:

2009

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(312)

参考文献(0)

引证文献(24)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读