-
Corn oil or corn grain supplementation to steers grazing endophyte-free tall fescue. II. Effects on subcutaneous fatty acid content and lipogenic gene expression.
Twenty-eight Angus steers (289 kg) were finished on a high-concentrate diet (85% concentrate: 15% roughage; CONC), or endophyte-free tall fescue pastures with corn grain supplement (0.52% of BW; PC), corn oil plus soybean hull supplement (0.10% of BW corn oil plus 0.45% of BW soybean hulls; PO), or no supplement (pasture only; PA). Subcutaneous adipose tissues were processed for total cellular RNA extraction and fatty acid composition by GLC. Relative expression of genes involved in lipogenesis [fatty acid synthase (FASN), acetyl-CoA carboxylase, lipoprotein lipase, stearoyl-CoA desaturase (SCD)] and activators of transcription [(peroxisome proliferator-activated receptor-gamma), C/EBPalpha, sterol regulatory binding protein-1, signal transducer and activator of transcription-5, and Spot-14] was determined by real-time quantitative PCR. Housekeeping gene (glyceraldehyde 3-phosphate dehydrogenase and beta-actin) expression was used in analysis to normalize expression data. Total fatty acid content was greatest (P < 0.001) for CONC and least (P < 0.001) for PA. Supplementation of grazing cattle increased (P < 0.001) total fatty acid content compared with PA, but concentrations were less (P < 0.001) than for CONC. Myristic and palmitic acid contents were greater (P < 0.001) for CONC than for PO and PC, which were greater (P < 0.001) than for PA. Stearic acid content was greater (P < 0.01) for PO than for CONC, PC, and PA. Finishing on CONC increased (P < 0.001) total MUFA content by 68% compared with PA. Corn grain supplementation increased (P < 0.001) MUFA content compared with PA; in contrast, MUFA content did not differ (P > 0.05) between PO and PA. Corn oil supplementation increased (P < 0.001) trans-11 vaccenic acid content in subcutaneous fat by 1.2-, 1.7- and 5.6-fold relative to PA, PC, and CONC, respectively. Concentrations of the cis-9, trans-11 CLA isomer were 54, 58, and 208% greater (P < 0.01) for PO than for PA, PC, and CONC, respectively. Corn grain supplementation to grazing steers did not alter (P > 0.05) the cis-9, trans-11 CLA isomer compared with PA. Oil supplementation increased (P < 0.001) linoleic acid (C18:2) content by 56, 98 and 262% compared with CONC, PC, and PA, respectively. Relative mRNA expression of SCD was upregulated (P < 0.001) by 46-, 18- and 7-fold, respectively, for CONC, PC, and PO compared with PA. Relative FASN mRNA expression was also upregulated (P = 0.004) by 9- and 5-fold, respectively, for CONC and PC compared with PA. Grain feeding, either on CONC or supplemented on pasture, upregulated FASN and SCD mRNA to increase MUFA and de novo fatty acids in subcutaneous adipose tissue. Upregulation of SCD with grain feeding and reduced tissue CLA concentrations suggest that the decreased CLA concentrations were the result of limited substrate (trans-11 vaccenic acid) availability.
Duckett SK
,Pratt SL
,Pavan E
《-》
-
Corn oil supplementation to steers grazing endophyte-free tall fescue. II. Effects on longissimus muscle and subcutaneous adipose fatty acid composition and stearoyl-CoA desaturase activity and expression.
Eighteen steers were used to evaluate the effect of supplemental corn oil level to steers grazing endophyte-free tall fescue on fatty acid composition of LM, stearoyl CoA desaturase (SCD) activity and expression as well as cellularity in s.c. adipose. Corn oil was supplemented (g/kg of BW) at 0 (none), 0.75 (medium), and 1.5 (high). Cottonseed hulls were used as a carrier for the corn oil and were supplemented according to pasture availability (0.7 to 1% of BW). Steers were finished on a rotationally grazed, tall fescue pasture for 116 d. Fatty acid composition of LM, s.c. adipose, and diet was determined by GLC. Total linoleic acid intake increased linearly (P < 0.01) with corn oil supplementation (90.7, 265.1, and 406.7 g in none, medium, and high, respectively). Oil supplementation linearly reduced (P < 0.05) myristic, palmitic, and linolenic acid percentage in LM and s.c. adipose. Vaccenic acid (C18:1 t11; VA) percentage was 46 and 32% greater (linear, P = 0.02; quadratic, P = 0.01) for medium and high, respectively, than none, regardless of tissue. Effect of oil supplementation on CLA cis-9, trans-11 was affected by type of adipose tissue (P < 0.01). In the LM, CLA cis-9, trans-11 isomer was 25% greater for medium than for none and intermediate for high, whereas CLA cis-9, trans-11 CLA isomer was 48 and 33% greater in s.c. adipose tissue for medium and high than for none, respectively. Corn oil linearly increased (P </= 0.01) trans-10 octadecenoic acid and CLA trans-10, cis-12; however, values were low (<0.35 and <0.035% of total fatty acids, respectively). Oil supplementation did not change (P > 0.05) the percentage of total SFA, MUFA, or PUFA but linearly increased (P = 0.03) n-6:n-3 ratio from 2.4 to 2.9 in none and high, respectively. Among tissues, total SFA and MUFA were greater in s.c. adipose than LM, whereas total PUFA, n-6, and n-3 fatty acids and the n-6:n-3 ratio were lower. Trans-10 octadecenoic acid, VA, and CLA trans-10, cis-12 were greater (P < 0.01) in s.c. adipose than in LM. Oil supplementation did not alter (P > 0.05) stearoyl CoA desaturase activity or mRNA expression. Corn oil supplementation to grazing steers reduced the percentages of highly atherogenic fatty acids (myristic and palmitic acids) and increased the percentages of antiatherogenic and anticarcinogenic fatty acids (VA and cis-9, trans-11 CLA).
Pavan E
,Duckett SK
《-》
-
Corn oil or corn grain supplementation to steers grazing endophyte-free tall fescue. I. Effects on in vivo digestibility, performance, and carcass quality.
Twenty-eight Angus (289 +/- 3.8 kg) steers were used in a completely randomized design to evaluate the effect of isocaloric supplementation of 2 different energy sources to steers rotationally grazing tall fescue pastures for 197 d in comparison to positive and negative controls. Steers were supplemented with either corn grain (0.52% BW on a DM basis; PC) or soybean hulls plus corn oil (0.45% BW on a DM basis + 0.10% BW on an as-fed basis; PO) using Calan gates for individual intake measurement. Negative, pasture only (PA), and positive, high-concentrate control diets (85% concentrate:15% roughage on DM basis; C) were also included in the study. Steers on PC, PO, and PA treatments were managed together under a rotational grazing system, whereas C steers were fed a high-concentrate diet for the final 113 d using Calan gates. Forage DMI and apparent DM and NDF digestibility for the grazing treatments were evaluated using Cr(2)O(5) and indigestible NDF as digesta markers. Energy supplementation decreased (P = 0.02) forage DMI (% of BW) with respect to PA, but not (P = 0.58) total DMI. There were no differences (P = 0.53) among grazing treatments on apparent total DM digestibility. However, NDF digestibility was less (P < or = 0.05) in PC than in PO and PA; the latter 2 treatments did not differ (P > 0.05). Overall ADG was greater (P < 0.01) in supplemented, regardless of type, than in nonsupplemented grazing treatments. During the final 113 d, ADG was greater (P < 0.01) in C than in the grazing treatments. Overall supplement conversion did not differ (P = 0.73) between supplement types and was less (P = 0.006) than C. Carcass traits did not differ (P > 0.05) between energy sources. Dressing percentage and HCW were greater (P < 0.01) in supplemented cattle than in PA. Fat thickness and KPH percentage for PA were less (P < 0.05) than for PO but did not differ (P > 0.14) from PC. Marbling score, LM area, and quality grade did not differ (P > 0.05) between grazing treatments. Hot carcass weight for C was heavier (P < 0.001) than for pastured cattle. Quality and yield grades of C carcasses were also greater (P < 0.001) than carcasses from pastured steers. Energy supplementation, regardless of source, to grazing steers increased ADG, dressing percentage, and carcass weight compared with PA steers; however, supplemented steers had less ADG, efficiency, dressing percentage, and carcass weight compared with high-concentrate finished steers.
Pavan E
,Duckett SK
《-》
-
Effects of winter stocker growth rate and finishing system on: III. Tissue proximate, fatty acid, vitamin, and cholesterol content.
Angus-cross steers (n = 198; 270 kg of BW; 8 mo) were used in a 3-yr study to assess the effects of winter stocker growth rate and finishing system on LM proximate, fatty acid, cholesterol, vitamin, and mineral composition. During the winter months (December to April), steers were randomly allotted to 3 stocker growth rates: low (0.23 kg/d), medium (0.45 kg/d), or high (0.68 kg/d). At the completion of the stockering phase, steers were allotted randomly within each stocker growth rate to a high concentrate (CONC) or pasture (PAST) finishing system and finished to an equal time endpoint. Winter stocker growth rate did not alter (P > 0.05) proximate, cholesterol, or vitamin content of the LM. All interactions among winter stocker growth rate and finishing system were nonsignificant, indicating that supplementation systems during winter stocker period did not influence beef composition after finishing on PAST or CONC. Finishing steers on CONC decreased (P < 0.001) moisture content of the LM and increased (P < 0.001) lipid content of the LM. Protein, ash, and cholesterol content of the LM did not differ (P > 0.05) between finishing systems. alpha-Tocopherol and beta-carotene content of the LM were 288 and 54% greater, respectively, for PAST-finished cattle than CONC. B-vitamins, thiamine and riboflavin, were also present in greater (P = 0.001) concentrations for PAST than CONC. Calcium, Mg, and K contents of the LM were greater (P < 0.05) for PAST than CONC. Total fatty acid content of the LM was 49% less for PAST than CONC. Myristoleic, palmitoleic, and oleic acid concentrations were all less (P = 0.001) for PAST than CONC. Trans-10 octadecenoic acid percentage in LM was 97% greater (P = 0.001) for CONC than PAST; conversely, trans-11 vaccenic acid percentage in the LM was 90% greater (P = 0.001) for PAST than CONC. Conjugated linoleic acid, cis-9, trans-11 isomer, percentage was greater (P = 0.001) by 117% for PAST than CONC. Linoleic acid (C18:2) concentration did not differ (P > 0.05) among PAST and CONC. Concentrations of all n-3 fatty acids (linolenic acid, eicosapentaenoic, docosapentaenoic, docosahexaenoic) were greater (P = 0.01) for PAST than CONC. Total n-6 PUFA percentages were unchanged (P > 0.05) among finishing systems. The ratio of n-6 to n-3 fatty acids was 4.84 for CONC and 1.65 for PAST. Beef from CONC finished has a greater total, saturated, and monounsaturated fat content; in contrast, beef from PAST finished has less total, saturated, and monounsaturated fat content with greater contents of n-3 fatty acids and a decreased n-6 to n-3 ratio. Beef from PAST finished also has greater contents of B-vitamins and antioxidants (vitamin E and beta-carotene).
Duckett SK
,Neel JP
,Fontenot JP
,Clapham WM
... -
《-》
-
Lipogenesis and stearoyl-CoA desaturase gene expression and enzyme activity in adipose tissue of short- and long-fed Angus and Wagyu steers fed corn- or hay-based diets.
Angus and Wagyu steers consuming high-roughage diets exhibit large differences in adipose tissue fatty acid composition, but there are no differences in terminal measures of stearoyl-CoA desaturase (SCD) activity or gene expression. Also, adipose tissue lipids of cattle fed corn-based diets have greater MUFA:SFA ratios than cattle fed hay-based diets. We hypothesized that any changes in SCD gene expression and activity would precede similar changes in adipose tissue lipogenesis between short- and long-fed endpoints. Furthermore, changes in SCD activity and gene expression between production endpoints would differ between corn- and hay-fed steers and between Wagyu and Angus steers. Angus (n = 8) and Wagyu (n = 8) steers were fed a corn-based diet for 8 mo (short-fed; 16 mo of age) or 16 mo (long-fed; 24 mo of age), whereas another group of Angus (n = 8) and Wagyu (n = 8) steers was fed a hay-based diet for 12 mo (short-fed; 20 mo of age) or 20 mo (long-fed; 28 mo of age) to match the end point BW of the corn-fed steers. Acetate incorporation into lipids in vitro was greater (P < 0.01) in corn-fed steers than in hay-fed steers and tended (P = 0.06) to be greater in Wagyu than in Angus s.c. adipose tissue because the rate in Wagyu was twice that of Angus adipose tissue in the corn-fed, short-fed steers. There were diet x end point interactions for lipogenesis in i.m. and s.c. adipose tissues (both P < 0.01) because lipogenesis was 60 to 90% lower in the long-fed cattle than in short-fed cattle fed the corn-based diet. The greatest SCD enzyme activity in Angus s.c. adipose tissue was observed at 24 mo of age (corn-based diet), but activity in Wagyu adipose tissue was greatest at 28 mo of age (hay-based diet; breed x diet x end point interaction, P = 0.08). For short- vs. long-fed endpoints in Angus, s.c. adipose tissue SCD activity was less (hay diet) or the same (corn diet). Conversely, SCD gene expression was greatest in long-fed Wagyu steers fed the hay- or corn-based diets (breed x end point interaction; P < 0.01). Contrary to our hypotheses, SCD activity increased over time, whereas lipogenesis from acetate decreased. However, the developmental pattern of SCD gene expression and activity differed markedly between hay-fed Angus and Wagyu adipose tissues, which may explain the differences in the MUFA:SFA ratios observed in adipose tissues from these cattle.
Chung KY
,Lunt DK
,Kawachi H
,Yano H
,Smith SB
... -
《-》