Screening for social anxiety disorder with the self-report version of the Liebowitz Social Anxiety Scale.

来自 PUBMED

作者:

Rytwinski NKFresco DMHeimberg RGColes MELiebowitz MRCissell SStein MBHofmann SG

展开

摘要:

This study examined whether the self-report version of the Liebowitz Social Anxiety Scale (LSAS-SR) could accurately identify individuals with social anxiety disorder and individuals with the generalized subtype of social anxiety disorder. Furthermore, the study sought to determine the optimal cutoffs for the LSAS-SR for identifying patients with social anxiety disorder and its generalized subtype. Two hundred and ninety-one patients with clinician-assessed social anxiety disorder (240 with generalized social anxiety disorder) and 53 control participants who were free from current Axis-1 disorders completed the LSAS-SR. Receiver Operating Characteristic analyses revealed that the LSAS-SR performed well in identifying participants with social anxiety disorder and generalized social anxiety disorder. Consistent with Mennin et al.'s [2002: J Anxiety Disord 16:661-673] research on the clinician-administered version of the LSAS, cutoffs of 30 and 60 on the LSAS-SR provided the best balance of sensitivity and specificity for classifying participants with social anxiety and generalized social anxiety disorder, respectively. The LSAS-SR may be an accurate and cost-effective way to identify and subtype patients with social anxiety disorder, which could help increase the percentage of people who receive appropriate treatment for this debilitating disorder.

收起

展开

DOI:

10.1002/da.20503

被引量:

138

年份:

2009

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(447)

参考文献(0)

引证文献(138)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读