Prolonged exposure to palmitate impairs fatty acid oxidation despite activation of AMP-activated protein kinase in skeletal muscle cells.

来自 PUBMED

作者:

Pimenta ASGaidhu MPHabib SSo MFediuc SMirpourian MMusheev MCuri RCeddia RB

展开

摘要:

The aim of this study was to investigate the chronic effects of palmitate on fatty acid (FA) oxidation, AMPK/ACC phosphorylation/activation, intracellular lipid accumulation, and the molecular mechanisms involved in these processes in skeletal muscle cells. Exposure of L6 myotubes for 8 h to 200, 400, 600, and 800 microM of palmitate did not affect cell viability but significantly reduced FA oxidation by approximately 26.5%, approximately 43.5%, approximately 50%, and approximately 47%, respectively. Interestingly, this occurred despite significant increases in AMPK ( approximately 2.5-fold) and ACC ( approximately 3-fold) phosphorylation and in malonyl-CoA decarboxylase activity ( approximately 38-60%). Low concentrations of palmitate (50-100 microM) caused an increase ( approximately 30%) in CPT-1 activity. However, as the concentration of palmitate increased, CPT-1 activity decreased by approximately 32% after exposure for 8 h to 800 microM of palmitate. Although FA uptake was reduced ( approximately 35%) in cells exposed to increasing palmitate concentrations, intracellular lipid accumulation increased in a dose-dependent manner, reaching values approximately 2.3-, approximately 3-, and 4-fold higher than control in muscle cells exposed to 400, 600, and 800 microM palmitate, respectively. Interestingly, myotubes exposed to 400 microM of palmitate for 1 h increased basal glucose uptake and glycogen synthesis by approximately 40%. However, as time of incubation in the presence of palmitate progressed from 1 to 8 h, these increases were abolished and a time-dependent inhibition of insulin-stimulated glucose uptake ( approximately 65%) and glycogen synthesis ( approximately 30%) was observed in myotubes. These findings may help explain the dysfunctional adaptations that occur in glucose and FA metabolism in skeletal muscle under conditions of chronically elevated circulating levels of non-esterified FAs, such as in obesity and Type 2 Diabetes.

收起

展开

DOI:

10.1002/jcp.21520

被引量:

23

年份:

2008

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(827)

参考文献(0)

引证文献(23)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读