Thyroid hormone increases astrocytic glutamate uptake and protects astrocytes and neurons against glutamate toxicity.
摘要:
Thyroid hormone (T(3)) regulates the growth and differentiation of rat cerebellar astrocytes. Previously, we have demonstrated that these effects are due, at least in part, to the increased expression of extracellular matrix molecules and growth factors, such as fibroblast growth factor-2. T(3) also modulates neuronal development in an astrocyte-mediated manner. In the mammalian central nervous system, excitatory neurotransmission is mediated mainly by glutamate. However, excessive stimulation of glutamate receptors can lead to excitotoxicity and cell death. Astrocytic glutamate transporters, GLT-1 and GLAST, play an essential role in the clearance of the neuronal-released glutamate from the extracellular space and are essential for maintaining physiological extracellular glutamate levels in the brain. In the present study, we showed that T(3) significantly increased glutamate uptake by cerebellar astrocytes compared with control cultures. Inhibitors of glutamate uptake, such as L-PDC and DL-TBOA, abolished glutamate uptake on control or T(3)-treated astrocytes. T(3) treatment of astrocytes increased both mRNA levels and protein expression of GLAST and GLT-1, although no significant changes on the distribution of these transporters were observed. The gliotoxic effect of glutamate on cultured cerebellar astrocytes was abolished by T(3) treatment of astrocytes. In addition, the neuronal viability against glutamate challenge was enhanced on T(3)-treated astrocytes, showing a putative neuroprotective effect of T(3). In conclusion, our results showed that T(3) regulates extracellular glutamate levels by modulating the astrocytic glutamate transporters. This represents an important mechanism mediated by T(3) on the improvement of astrocytic microenvironment in order to promote neuronal development and neuroprotection.
收起
展开
DOI:
10.1002/jnr.21755
被引量:
年份:
2008


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(738)
参考文献(0)
引证文献(33)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无