Meta-analysis of continuous outcomes combining individual patient data and aggregate data.
摘要:
Meta-analysis of individual patient data (IPD) is the gold-standard for synthesizing evidence across clinical studies. However, for some studies IPD may not be available and only aggregate data (AD), such as a treatment effect estimate and its standard error, may be obtained. In this situation, methods for combining IPD and AD are important to utilize all the available evidence. In this paper, we develop and assess a range of statistical methods for combining IPD and AD in meta-analysis of continuous outcomes from randomized controlled trials. The methods take either a one-step or a two-step approach. The latter is simple, with IPD reduced to AD so that standard AD meta-analysis techniques can be employed. The one-step approach is more complex but offers a flexible framework to include both patient-level and trial-level parameters. It uses a dummy variable to distinguish IPD trials from AD trials and to constrain which parameters the AD trials estimate. We show that this is important when assessing how patient-level covariates modify treatment effect, as aggregate-level relationships across trials are subject to ecological bias and confounding. We thus develop models to separate within-trial and across-trials treatment-covariate interactions; this ensures that only IPD trials estimate the former, whilst both IPD and AD trials estimate the latter in addition to the pooled treatment effect and any between-study heterogeneity. Extension to multiple correlated outcomes is also considered. Ten IPD trials in hypertension, with blood pressure the continuous outcome of interest, are used to assess the models and identify the benefits of utilizing AD alongside IPD.
收起
展开
DOI:
10.1002/sim.3165
被引量:
年份:
2008


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(246)
参考文献(0)
引证文献(111)
来源期刊
影响因子:2.495
JCR分区: 暂无
中科院分区:暂无