Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula.
摘要:
Deciphering the mechanisms leading to symbiotic nitrogen-fixing root nodule organogenesis in legumes resulted in the identification of numerous nodule-specific genes and gene families. Among them, NCR and GRP genes encode short secreted peptides with potential antimicrobial activity. These genes appear to form large multigenic families in Medicago truncatula and other closely related legume species, whereas no similar genes were found in databases of Lotus japonicus and Glycine max. We analyzed the genomic organization of these genes as well as their evolutionary dynamics in the M. truncatula genome. A total of 108 NCR and 23 GRP genes have been mapped that were often clustered in the genome. These included 29 new NCR and 17 new GRP genes. Reverse transcription-polymerase chain reaction analyses of the novel genes confirmed their exclusive nodule-specific expression similar to the previously identified members. Protein alignments and phylogenetic analyses revealed traces of several duplication events in the history of GRP and NCR genes. Moreover, microsyntenic evidences between M. truncatula and L. japonicus validated the hypothesis that these genes are specific for the inverted repeat-lacking clade of hologalegoid legumes, which allowed dating the appearance of these two gene families during the evolution of legume plants.
收起
展开
DOI:
10.1094/MPMI-20-9-1138
被引量:
年份:
2007


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(352)
参考文献(0)
引证文献(48)
来源期刊
影响因子:3.419
JCR分区: 暂无
中科院分区:暂无