Effect of dietary energy source on in vitro substrate utilization and insulin sensitivity of muscle and adipose tissues of Angus and Wagyu steers.

来自 PUBMED

作者:

Rhoades RDSawyer JEChung KYSchell MLLunt DKSmith SB

展开

摘要:

Angus (n = 8; 210 kg of BW) and 7/8 Wagyu (n = 8; 174 kg of BW) steers were used to evaluate the effects of dietary energy source on muscle and adipose tissue metabolism and insulin sensitivity. Steers were assigned to either a grain-based (corn) or hay-based (hay) diet and fed to similar final BW. At slaughter, LM and s.c. and i.m. adipose tissue samples were collected. Portions of the LM and adipose tissues were placed immediately in liquid N for later measurement of glycolytic intermediates. Fresh LM and s.c. and i.m. adipose tissues were incubated with [U-(14)C]glucose to assess glucose metabolism in vitro. All in vitro measures were in the presence of 0 or 500 ng/mL of insulin. Also, s.c. and i.m. adipose tissues were incubated with [1-(14)C]acetate to quantify lipid synthesis in vitro. Glucose-6-phosphate and fructose-6-phosphate concentrations were 12.6- and 2.4-fold greater in muscle than in s.c. and i.m. adipose tissues, respectively. Diet did not affect acetate incorporation into fatty acids (P = 0.86). Insulin did not increase conversion of glucose to CO(2), lactate, or total lipid in steers fed hay but caused an increase (per cell) of 97 to 110% in glucose conversion to CO(2), 46 to 54% in glucose conversion to lactate, and 65 to 160% in glucose conversion to total lipid content in adipose tissue from steers fed corn. On a per-cell basis, s.c. adipose tissue had 37% greater glucose oxidation than i.m. adipose (P = 0.04) and 290% greater acetate incorporation into fatty acids than i.m. adipose (P = 0.04). Insulin addition to s.c. adipose tissue from corn-fed steers failed to stimulate glucose incorporation into fatty acids, but exposing i.m. adipose tissue from corn-fed steers to insulin resulted in a 165% increase in glucose incorporation into fatty acids. These results suggest that feeding hay limited both glucose supply and tissue capacity to increase glucose utilization in response to insulin without altering acetate conversion to fatty acids. Because s.c. adipose tissue consistently utilized more acetate and oxidized more glucose than did i.m. adipose, these results suggest that hay-based diets may alter i.m. adipose tissue metabolism with less effect on s.c. adipose tissue.

收起

展开

DOI:

10.2527/jas.2006-498

被引量:

25

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(651)

参考文献(0)

引证文献(25)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读