Origin of functional diversity among tetrameric voltage-gated channels.
摘要:
The aim of the present work is to relate functional differences of voltage-gated K(+) (K(v)), hyperpolarization-activated cyclic nucleotide-gated (HCN), and cyclic nucleotide gated (CNG) channels to differences in their amino acid sequences. By means of combined bioinformatic sequence analyses and homology modelling, we suggest that: (1) CNG channels are less voltage-dependent than K(v) channels since the charge of their voltage sensor, the S4 helix, is lower than that of K(v) channels and because of the presence of a conserved proline in the S4-S5 linker, which is quite likely to uncouple S4 from S5 and S6. (2) In HCN channels, S4 features a higher net positive charge with respect to K(v) channels and an extensive network of hydrophobic residues, which is quite likely to provide a tight coupling among S4 and the neighboring helices. We suggest insights on the gating of HCN channels and the reasons why they open with membrane hyperpolarization and with a significantly longer time constant with respect to other channels.
收起
展开
DOI:
10.1002/prot.21187
被引量:
年份:
2007


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(230)
参考文献(0)
引证文献(11)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无