Localization of aquaporin-1 water channel in glial cells of the human peripheral nervous system.

来自 PUBMED

作者:

Gao HHe CFang XHou XFeng XYang HZhao XMa T

展开

摘要:

The aquaporins (AQPs) are a family of water channel proteins with at least 13 mammalian members (AQPs 0-12) expressed in diverse fluid transporting tissues. AQP1, AQP4, and AQP9 have been identified in the central nervous system and demonstrated or proposed to play important roles in brain water homeostasis. Aquaporin expression in the peripheral nervous system is poorly studied. Here we report that the AQP1 water channel is specifically localized to glial cells of the peripheral nervous system by immunohistochemistry, RT-PCR, and immunoblotting. Paraffin-embedded biopsies of human pancreas, esophagus, and sciatic nerves were accessed by immunoperoxidase staining using affinity-purified AQP1, AQP4, and AQP9 antibodies. Strong AQP1 expression was identified in pancreatic nerve plexuses and in the submucosal and myenteric nerve plexuses in the esophagus. AQP1 was localized to the same cell population expressing glial fibrillary acidic protein (GFAP), but not to the neurons in the plexuses, indicating glial cell-specific expression. RT-PCR and immunoblot analysis of microdissected pancreatic ganglia confirmed the expression of AQP1 transcript and protein. Pancreatic and sciatic nerve bundles, which contain nonmyelinating and myelinating Schwann cells, respectively, were also selectively labeled by AQP1 antibody. AQP4 and AQP9, which are broadly expressed in astroglial cells in brain and spinal cord, were not localized in glial cells in the peripheral nerve plexuses. These results suggest that AQPs are differentially expressed in the peripheral versus central nervous system and that channel-mediated water transport mechanisms may be involved in peripheral neuronal activity by regulating water homeostasis in nerve plexuses and bundles.

收起

展开

DOI:

10.1002/glia.20336

被引量:

25

年份:

2006

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(449)

参考文献(0)

引证文献(25)

来源期刊

GLIA

影响因子:8.065

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读