Construction of a hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome library for cloning genes for stripe rust resistance.

来自 PUBMED

作者:

Ling PChen XM

展开

摘要:

A hexaploid wheat (Triticum aestivum L.) bacterial artificial chromosome (BAC) library was constructed for cloning Yr5 and other genes conferring resistance to stripe rust (Puccinia striiformis f. sp. tritici). Intact nuclei from a Yr5 near-isogenic line were used to isolate high molecular weight DNA, which was partially cleaved with HindIII and cloned into pECBAC1 and pIndigoBAC-5 vectors. The wheat BAC library consisted of 422,400 clones arrayed in 1100 micro-titer plates (each plate with 384 wells). Random sampling of 300 BAC clones indicated an average insert size of 140 kb, with a size range from 25 to 365 kb. Ninety percent of the clones in the library had an insert size greater than 100 kb and fewer than 5% of the clones did not contain inserts. Based on an estimated genome size of 15,966 Mb for hexaploid wheat, the BAC library was estimated to have a total coverage of 3.58x wheat genome equivalents, giving approximately 96% probability of identifying a clone representing any given wheat DNA sequence. Twelve BAC clones containing an Yr5 locus-specific marker (Yr5STS7/8) were successfully selected by PCR screening of 3-dimensional BAC pools. The results demonstrated that the T. aestivum BAC library is a valuable genomic resource for positional cloning of Yr5. The library also should be useful in cloning other genes for stripe rust resistance and other traits of interest in hexaploid wheat.

收起

展开

DOI:

10.1139/g05-078

被引量:

0

年份:

2005

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(235)

参考文献(0)

引证文献(0)

来源期刊

GENOME

影响因子:2.447

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读