Vascular endothelial growth factor-C promotes vasculogenesis, angiogenesis, and collagen constriction in three-dimensional collagen gels.

来自 PUBMED

作者:

Bauer SMBauer RJLiu ZJChen HGoldstein LVelazquez OC

展开

摘要:

Neovascularization, angiogenesis, and collagen constriction are essential for wound healing. We tested whether vascular endothelial growth factor-C (VEGF-C) can promote collagen constriction, capillary sprouting (angiogenesis), and invasion/migration of bone marrow-derived endothelial progenitor cells into collagen (vasculogenesis). We used a recently characterized three-dimensional collagen matrix assay with either monolayers of human dermal microvascular endothelial cells (HMVECs) or bone marrow-derived endothelial progenitor cells (BMD EPCs), obtained from Tie-2 LacZ transgenic mice, overlaid with an acellular layer and then a cellular layer of collagen embedded with fibroblasts, that were nontransduced or transduced with either LacZ adenoviral vector (Ad5) or VEGF-C/Ad5. The ability of VEGF-C to enhance fibroblast-mediated collagen constriction was measured, and gels overlying HMVECs or BMD EPCs were co-cultured, harvested, and assayed for HMVEC migration, sprouting, and capillary-like formation; gels containing BMD EPCs were assayed for EPC invasion/migration into the collagen extracellular matrix. VEGF-C significantly increased collagen constriction and formation of capillary-like structures with true lumina (P < .05) assessed by von Willebrand factor and VEGF receptor-2 immunoassaying. VEGF-C induced a significant increase in HMVEC migration, tubular polarization, and branching sprouts associated with a significant up-regulation of membrane type 1 matrix metalloproteinase (MT1-MMP) ( P < .05). Fibroblasts were necessary to support BMD-EPC invasion/migration from the monolayer into the collagen. Moreover, fibroblasts overexpressing VEGF-C significantly enhanced EPC invasion/migration ( P < .05) into the extracellular matrix by two-fold, and this effect could not be achieved with equivalent levels of exogenous VEGF-C in the absence of fibroblasts. The addition of a soluble VEGF-C competitor protein only partially inhibited these responses, reducing the EPCs by three-fold, but significant numbers of EPCs still invaded/migrated into the extracellular matrix, suggesting that other fibroblast-specific signals also contribute to the vasculogenic response. Fibroblast-specific expression of VEGF-C promotes collagen constriction by fibroblasts and enhances microvascular endothelial cell migration, branching, and capillary sprouting in association with up-regulating MT1-MMP expression. Fibroblasts are necessary for BMD EPC invasion/migration into collagen, and their overexpression of VEGF-C enhances this fibroblast-mediated vasculogenic effect. Collectively, these findings suggest a role for VEGF-C in multiple biologic steps required for wound healing (angiogenesis, vasculogenesis, and collagen constriction). Ischemic wound healing remains an unsolved problem with no previously identified molecular target for therapeutic intervention. This study demonstrates that VEGF-C overexpression by fibroblasts stimulates multiple biologic processes known to impact wound healing, such as collagen constriction, capillary sprouting, and EPC invasion and migration through extracellular matrix. Most ischemic wounds fail to heal and frequently lead to major limb amputation. Available cytokine ointments are ineffective, and revascularization is often not technically feasible. Even when these procedures are accomplished, many ischemic wounds frequently still do not heal because of multifactorial tissue level impairments in the fibroblastic and neovascularization responses at the wound base. Our findings identify an important role for two novel tissue level targets, dermis-derived fibroblasts and VEGF-C, in collagen constriction, angiogenesis, and postnatal vasculogenesis from BMD EPCs. Thus the findings are particularly relevant to the unsolved clinical problem of ischemic wound healing.

收起

展开

DOI:

10.1016/j.jvs.2005.01.015

被引量:

38

年份:

2005

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1000)

参考文献(0)

引证文献(38)

来源期刊

JOURNAL OF VASCULAR SURGERY

影响因子:4.855

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读