Fragmentation and development of preimplantation porcine embryos derived by parthenogenetic activation and nuclear transfer.
Fragmentation occurs during early developmental stages of electrically activated oocytes and nuclear transfer (NT) embryos. It might contribute to the low developmental rate of porcine NT embryos. The present study was conducted to investigate whether the addition of sugars such as sorbitol or sucrose suppresses fragmentation and supports the development of electrically activated oocytes and NT embryos. The activated oocytes were cultured in Porcine Zygote Medium-3 (PZM-3) supplemented with sorbitol or sucrose for 2 days after electric activation, and then cultured in the PZM-3 for the remaining 4 days. The osmolarities of PZM-3, PZM-3 supplemented with 0.05 or 0.1 M sorbitol, and PZM-3 with 0.05 M sucrose were 269 +/- 6.31, 316 +/- 3.13, 362 +/- 4.37, and 315 +/- 5.03 mOsm, respectively. When parthenogentically activated oocytes were cultured in PZM-3 supplemented with 0.05 M sorbitol or sucrose for the first 2 days and then cultured in PZM-3 without sugar, a significantly higher (P < 0.05) cleavage rate and blastocyst rate were observed. Interestingly, addition of sugar to PZM-3 for 2 days reduced the fragmentation rate compared to PZM-3 without sugar. In NT embryos, sugar addition into PZM-3 increased the fusion rate (84.2% +/- 6.07 vs. 95.1% +/- 2.52), cleavage rate (67.6% +/- 5.80 vs. 77.3% +/- 3.03), and developmental rate to the blastocyst stage (10.2% +/- 0.79 vs. 19.4% +/- 1.77). There was no significant difference between treatments for the number of the blastocysts. In addition the fragmentation rate was reduced compared to PZM-3 without sorbitol (26.1 +/- 4.30 vs. 14.5 +/- 1.74). In conclusion, increasing the osmolarity of PZM-3 through addition of either sorbitol or sucrose for 48 hr increased the cleavage and developmental rate to the blastocyst stage by reducing the fragmentation rate through increasing osmolarity.
Im GS
,Yang BS
,Lai L
,Liu Z
,Hao Y
,Prather RS
... -
《MOLECULAR REPRODUCTION AND DEVELOPMENT》
In vitro development of preimplantation porcine nuclear transfer embryos cultured in different media and gas atmospheres.
This study investigated the effect of culture media and gas atmospheres on the development of porcine nuclear transfer embryos. Oocytes derived from a local abattoir were matured for 42-44 h and enucleated. Fetal fibroblasts were prepared from a Day 35 porcine fetus. Confluent stage fetal fibroblasts were introduced into the perivitelline space of enucleated oocytes. Fusion and activation were induced simultaneously with two direct current (1.2 kV/cm for 30 micros) in 0.3 M mannitol medium. For parthenogenetic activation, the same pulses were used. In Experiment 1, parthenogenetically activated oocytes were cultured in North Carolina State University-23 (NCSU-23), Porcine Zygote Medium-3 (PZM-3), or Beltsville Embryo Culture Medium-3 (BECM-3). Parthenogenetically activated oocytes cultured in PZM-3 had a higher (P < 0.05) developmental rate to the blastocyst stage (15.2% versus 3.7-9.6%) as compared to BECM-3 or NCSU-23. The number of nuclei in Day 6 blastocysts was higher (P < 0.05) in PZM-3 (23.6) and NCSU-23 (21.4) than BECM-3 (14.2). In Experiment 2, parthenogenetically activated oocytes were cultured in NCSU-23 under a gas atmosphere of 5% CO(2) in air for 6 days (T1), 5% CO(2), 5% O(2), 90% N(2) for 6 days (T2), 5% CO(2) in air for 3 days, then 5% CO(2), 5% O(2), 90% N(2) for 3 days (T3), or 5% CO(2), 5% O(2), 90% N(2) for 3 days, then 5% CO(2) in air for 3 days (T4). Blastocyst formation rates were not different among treatments (12.9 =/-3.6 %, 13.5 +/- 4.2%, 10.8+/-2.4%, and 12.6+/-2.7%, respectively). However, T2 (36.7+/-2.9) and T3 (33.8+/-3.0) resulted in more nuclei per blastocyst than T1 (23.2+/-2.1) or T4 (26.0+/-2.1 ). In Experiment 3, reconstructed porcine nuclear transfer (NT) embryos were cultured in NCSU-23 or PZM-3 under a gas atmosphere of 5% CO(2) in air or 5% CO(2), 5% O(2), 90% N(2). Developmental rates to blastocyst stage for porcine NT embryos cultured in NCSU-23 under a gas atmosphere of 5% CO(2) in air or 5% CO(2), 5% O(2), 90% N(2) were 7.2+/-1.4% and 12.3+/-1.4%, and the number of nuclei was 12.2=/-0.8% and 19.4+/-1.0, respectively. NT embryos cultured in PZM-3 under a gas atmosphere of 5% CO(2) in air or 5% CO(2), 5% O(2), 90% N(2) had developmental rates to blastocyst stage of 18.8+/-1.9 %, and 17.8+/-3.8% the nuclei number was 20.9 +/- 1.9 and 21.9+/-3.3, respectively. NT embryos cultured in NCSU-23 had a higher developmental rate to the blastocyst stage in 5% CO(2), 5% O(2), 90% N(2) than in 5% CO(2) in air (P < 0.05). Regardless of gas atmospheres, NT embryos cultured in PZM-3 had a higher developmental rate (18.3 =/- 1.7% versus 16.9 +/- 1.2%) and nuclei number (21.4 +/-1.8 versus 16.9 +/- 1.2) than in NCSU-23 (P < 0.05). In conclusion, a gas atmosphere of 5% CO(2), 5% O(2), 90% N(2) supported a higher development rate of porcine NT embryos than 5% CO(2) in air when the porcine NT embryos were cultured in NCSU-23. Furthermore, regardless of atmosphere, PZM-3 supported a higher development rate of porcine nuclear transfer embryos than NCSU-23.
Im GS
,Lai L
,Liu Z
,Hao Y
,Wax D
,Bonk A
,Prather RS
... -
《THERIOGENOLOGY》
Brief exposure to cycloheximide prior to electrical activation improves in vitro blastocyst development of porcine parthenogenetic and reconstructed embryos.
To investigate the effects of cycloheximide exposure before electrical activation of in vitro-matured porcine oocytes on the subsequent development of parthenogenetic embryos, cumulus-free mature oocytes were exposed to NCSU-23 medium containing cycloheximide (10 microg/mL) for 0, 5, 10, 20, 30 and 60 min, activated by electrical pulse treatment (1.5 kV/cm, 100 micros) and then cultured in PZM-3 for 7 days. To evaluate the effects of cycloheximide on the activation of nuclear transfer embryos, reconstructed embryos were electrically activated by two DC pulses (1.2 kV/cm, 30 micros) before or after exposure to cycloheximide. The reconstructed embryos were allocated into four groups: electrical pulse treatment alone (Ele); exposure to cycloheximide for 10 min followed by electrical activation (CHX+Ele); electrical activation followed by exposure to cycloheximide for 6h (Ele+CHX); exposure to cycloheximide for 10 min, followed by electrical activation and a further exposure to cycloheximide for 6h (CHX+Ele+CHX). The activated reconstructed embryos were cultured in PZM-3 for 6 days. Oocytes treated with 10 min exposure to cycloheximide followed by electrical activation had a significantly higher percentage of blastocyst formation compared to control oocytes and oocytes exposed for > or =30 min. In the reconstructed embryos, the blastocyst development rates of embryos exposed to cycloheximide (CHX+Ele, Ele+CHX and CHX+Ele+CHX) were significantly higher than those of the control group (Ele). Among the cycloheximide-treated groups, the CHX+Ele group had increased development rate and total blastocyst cell number, though these values were not significantly different from those observed in the other cycloheximide-treated groups. To evaluate the quality of NT embryos treated with cycloheximide, apoptosis in blastocysts was analyzed by TUNEL assay. The 10 min exposure to cycloheximide prior to electrical activation significantly reduced cell death compared with longer exposure to cycloheximide after electrical fusion. In conclusion, brief exposure to cycloheximide prior to electrical activation may increase the subsequent blastocyst development rates in porcine parthenogenetic and reconstructed embryos.
Naruse K
,Quan YS
,Kim BC
,Lee JH
,Park CS
,Jin DI
... -
《THERIOGENOLOGY》
Osmolarity at early culture stage affects development and expression of apoptosis related genes (Bax-alpha and Bcl-xl) in pre-implantation porcine NT embryos.
This study examined whether high osmolarity of culture medium at the early culture stage affects development and expression of apoptosis related genes (Bax-alpha and Bcl-xl) of porcine nuclear transfer (NT) and in vitro fertilization (IVF) embryos. NT and IVF embryos were divided into three groups and the basic medium was PZM-3 (260-270 mOsmol, control group). The control group of embryos was cultured in PZM-3 for whole culture period. Other two groups of embryos were cultured in a modified PZM-3 with 0.05 M sucrose (300-320 mOsmol, sucrose group) or increased NaCl to 138 mM (300-320 mOsmol, NaCl group) for the first 2 days, and then cultured in PZM-3 for 4 days. NT embryos cultured in NaCl group showed a significantly higher developmental rate to the blastocyst stage with a decreased apoptosis rate compared to the control (P < 0.05). There was no difference in blastocyst formation and apoptosis incidence among the three culture treatments for IVF-derived embryos. Bax-alpha mRNA expression was significantly higher in the control than sucrose or NaCl group for both NT and IVF embryos (P < 0.05). Moreover, the relative abundance of Bax-alpha/Bcl-xl was higher in the control than the treatment groups. These results indicate that the higher osmolarity at the early embryonic stage of porcine NT and IVF embryos can improve the in vitro development with reduced apoptosis through regulating the Bax-alpha/Bcl-xl gene expression.
Hwang IS
,Park MR
,Moon HJ
,Shim JH
,Kim DH
,Yang BC
,Ko YG
,Yang BS
,Cheong HT
,Im GS
... -
《-》
Effects of chemically defined medium on early development of porcine embryos derived from parthenogenetic activation and cloning.
The present study was to investigate if a completely chemically defined medium (PZM-4) could support the early development of porcine embryos derived from parthenogenetic activation (PA) and cloning (somatic cell nuclear transfer, SCNT), and to lay the foundation for determining the physiological roles of certain supplements in this medium. Porcine embryos derived from PA and SCNT were cultured in media: PZM-3 (a chemically semi-defined medium), PZM-4 (a fully defined medium), and PZM-5 (an undefined medium). Early embryo development was observed. We found that the three medium groups (PZM-3, PZM-4 and PZM-5) exhibited no significant differences in cleavage rates of PA embryos (p > 0.05), while the blastocyst rate in PZM-3 was significantly higher than in PZM-4 and PZM-5 (78.9% vs. 36.0% and 52.3%) (p < 0.05). Moreover, total cell number per blastocyst in PZM-3 was clearly higher than in PZM-5 but similar to that in PZM-4. As for SCNT embryos, no significant differences were observed for the cleavage rates or the blastocyst rates among the three groups (p > 0.05). However, total cell number per blastocyst in PZM-3 was notably higher than in PZM-5, but was similar to that in PZM-4. In conclusion, our results suggested that the completely chemically defined medium PZM-4 can be used to efficiently support the early development of porcine PA and SCNT embryos.
Cao Z
,Sui L
,Li Y
,Ji S
,Zhang X
,Zhang Y
... -
《-》