-
Effects of oxygen tension on the development and quality of porcine in vitro fertilized embryos.
The present study was conducted to examine the effect of oxygen tension during in vitro culture (IVC) of porcine oocytes/embryos on their development and quality using two different culture systems. Porcine cumulus oocyte complexes (COCs) were matured (IVM) and fertilized (IVF) in vitro, and subsequently cultured for 6 days in a simple and economical portable incubator or a standard CO(2) incubator. While the same temperature (38.5 degrees C) and CO(2) concentration (5%) were used in the both systems, the portable incubator was operated in a negative air pressure (- 300 mmHg) to create an O(2) level at 8-10% (low O(2) concentration), or in a positive air pressure (high O(2) concentration). To compare the two culture systems, IVM and IVF of COCs and subsequent IVC of in vitro produced (IVP) embryos were carried out in the portable incubator with a low O(2) concentration (Group I) or in the standard incubator with a high O(2) concentration (Group II). To assess the effect of O(2) concentration on IVC of IVP embryos, some oocytes that had been cultured in the standard incubator for IVM and IVF were subsequently cultured in the portable incubator with a low O(2) concentration (Group III) or a high O(2) concentration (Group IV). The occurrence of DNA fragmentation in the blastocysts produced under different culture conditions was examined by TUNEL staining to assess embryo quality. The rates of oocytes that reached MII and were penetrated by spermatozoa following IVF did not differ between the two incubation systems. In contrast, the proportions of development to blastocysts and the mean cell number of blastocysts in Group I were higher than those in Group II and Group IV. The index of DNA-fragmented nucleus in the blastocysts of Group I was significantly lower than that in the blastocysts of Group II. Therefore, low oxygen tension during IVM, IVF and IVC enhanced the subsequent development of IVP embryos to the blastocyst stage and improved their quality.
Karja NW
,Wongsrikeao P
,Murakami M
,Agung B
,Fahrudin M
,Nagai T
,Otoi T
... -
《THERIOGENOLOGY》
-
The effect of oxygen tension on porcine embryonic development is dependent on embryo type.
Reducing oxygen concentration from atmospheric levels during in vitro culture generally, but not invariably, improves embryonic development across a range of species. Since the few published reports of such an action in the pig are contradictory--perhaps a consequence of the derivation of the embryos prior to culture--a study was performed to examine the effect of O2 tension during culture on three different types of porcine embryos, namely: in vivo flushed embryos, and in vitro matured oocytes either fertilized in vitro or parthenogenetically activated. In vivo embryos (n=208) were flushed at the 2-8 cell stage. Cumulus oocyte complexes (COCs) destined for IVF or parthenogenetic activation were derived from 2 to 6 mm, post-pubertal ovarian follicles and matured for 48 h in TCM-199. Parthenogenones were generated by activating denuded oocytes (n=573) with 10 mM calcium ionophore, followed by 2 mM DMAP prior to culture. The IVF embryos (n=971) were produced by fertilizing COCs (day 0) with fresh ejaculated semen in modified tris-based medium for 6 h before cumulus removal. All embryos were cultured in BECM-3 containing 12 mg/mL fatty-acid-free BSA up to day 4, followed by BECM-3 supplemented with 10% calf serum until day 7. The gas environment for IVM/IVF was 5% CO2 in air, while that for IVC was either 5% CO2 in air or 5% O2, 5% CO2 and 90% N2. Low O2 tension increased both day 7 blastocyst rates (high versus low O2, respectively; 9.3+/-2.9%: 26/280; 23.9+/-4.2%: 71/293; P<0.001) and total cell numbers (39.3+/-2.9, n=24 versus 61.2+/-7.7, n=61; P=0.01) of parthenogenetically activated embryos. In contrast, such a treatment neither affected blastocyst rates (89.3+/-6.9 versus 87.8+/-7.5) nor cell numbers (87.4+/-4.5 versus 87.7+/-4.8) of in vivo flushed embryos. The effect of reduced O2 concentration on IVF embryos was intermediate, since only cell numbers were improved (69.8+/-3.5, range=17-204, n=49; 88.5+/-5.8, range=28-216; n=66; P<0.01), equivalent to that recorded in in vivo flushed embryos. However, blastocyst rates were unaffected (10.7+/-1.4%: 51/486; 12.9+/-2.2%: 67/485). The effect, when present, of reducing O2 concentration from 20 to 5% was beneficial for pig in vitro embryonic development. The responses are apparently dependent on firstly, the manner by which the embryonic cell cycle is activated and secondly, the derivation of the tissue prior to placement into culture, if the observed resilience of in vivo embryos is independent of treatment duration.
Booth PJ
,Holm P
,Callesen H
《THERIOGENOLOGY》
-
Quality controls for bovine viral diarrhea virus-free IVF embryos.
Introduction of bovine viral diarrhea virus (BVDV) with cumulus-oocyte-complexes (COCs) from the abattoir is a concern in the production of bovine embryos in vitro. Further, International Embryo Transfer Society (IETS) guidelines for washing and trypsin treatment of in-vivo-derived bovine embryos ensure freedom from a variety of pathogens, but these procedures appear to be less effective when applied to IVF embryos. In this study, COCs were exposed to virus prior to IVM, IVF and IVC. Then, virus isolations from cumulus cells and washed or trypsin-treated nonfertile and degenerated ova were evaluated as quality controls for IVF embryo production. The effect of BVDV on rates of cleavage and development was also examined. All media were analyzed prior to the study for anti-BVDV antibody. Two approximately equal groups of COCs from abattoir-origin ovaries were washed and incubated for 1 h in minimum essential medium (MEM) with 10% equine serum. One group was incubated in 10(7) cell culture infective doses (50% endpoint) of BVDV for 1 h, while the other was incubated without virus. Subsequently, the groups were processed separately with cumulus cells, which were present throughout IVM, IVF and IVC. Cleavage was evaluated at 4 d and development to morulae and blastocysts at 7 d of IVC. After IVC, groups of nonfertile and degenerated ova or morulae and blastocysts were washed or trypsin-treated, sonicated and assayed for virus. Cumulus cells collected at 4 and 7 d were also assayed for virus. Anti-BVDV antibody was found in serum used in IVM and IVC but not in other media. A total of 1,656 unexposed COCs was used to produce 1,284 cleaved embryos (78%), 960 embryos > or = 5 cells (58%), and 194 morulae and blastocysts (12%). A total of 1,820 virus-exposed COCs was used to produce 1,350 cleaved embryos (74%), 987 embryos > or = 5 cells (54%), and 161 morulae and blastocysts (9%). Rates of cleavage (P = 0.021), cleavage to > or = 5 cells (P = 0.026) and development to morula and blastocyst (P = 0.005) were lower in the virus-exposed group (Chi-square test for heterogeneity). No virus was isolated from any samples from the unexposed group. For the exposed group, virus was always isolated from 4- and 7-d cumulus cells, from all washed nonfertile and degenerated ova (n = 40) and morulae and blastocysts (n = 57) and from all trypsin-treated nonfertile and degenerated ova (n = 80) and morulae and blastocysts (n = 91). Thus, virus persisted in the system despite the presence of neutralizing antibody in IVM and IVC media, and both washing and trypsin treatment were ineffective for removal of the virus. Presence of virus in 4- and 7-d cumulus cells as well as in nonfertile and degenerated ova were good indicators of virus being associated with morulae and blastocysts.
Stringfellow DA
,Riddell KP
,Galik PK
,Damiani P
,Bishop MD
,Wright JC
... -
《THERIOGENOLOGY》
-
Low concentrations of MEM vitamins during in vitro maturation of porcine oocytes improves subsequent parthenogenetic development.
To investigate the effects of water-soluble vitamin supplementation for IVM/IVC of porcine oocytes and evaluate maturation and developmental capacity in vitro, porcine cumulus oocyte complexes (COCs) was matured in NCSU-23-based medium with water-soluble vitamins for 44 h and then cultured in PZM-3 for 7 days following activation. The COCs were allocated into five treatment groups and matured in various concentrations of MEM vitamins (control, 0.05, 0.1, 0.2, 0.4, and 1x). Metaphase II plates of the cumulus-free oocytes were observed following Hoechest 33258 staining. The COCs were allocated into four treatment groups, matured in various concentrations of MEM vitamins (control, 0.05, 0.1, 0.2, and 0.4x) and cultured in PZM-3 following activation. Also, COCS were matured without MEM vitamins and cultured in PZM-3 with various concentrations (control, 0.1, 0.4, 1.0, and 2.0 x) of MEM vitamins. Furthermore, 2 x 2 factorial (IVM/IVC) experiments were performed in IVM medium with or without 0.05 x MEM vitamins and IVC medium with or without 0.4x MEM vitamins to examine the in vitro development of parthenogenetic embryos. Maturation rates of COCs treated with MEM vitamins did not differ significantly among groups. However, compared to the control group, oocytes matured with the addition of 0.05 x MEM vitamins developed to blastocysts at a higher percentage (P<0.05) following activation and culture in PZM-3 without MEM vitamins. Total cell number of blastocysts was significantly higher in the 0.05 x group. Addition of 0.4x MEM vitamins decreased (P<0.05) cleavage and blastocyst developmental rates compared with 0.05 x MEM vitamins-treated group. In contrast, addition of vitamins to PZM-3 medium for in vitro culture of activated porcine oocytes did not affect development. In conclusion, addition of a low concentration of MEM vitamins to IVM medium for porcine oocytes enhanced subsequent development and improved embryo quality.
Naruse K
,Kim HR
,Shin YM
,Chang SM
,Lee HR
,Park CS
,Jin DI
... -
《THERIOGENOLOGY》
-
Blastocyst production by in vitro maturation and development of porcine oocytes in defined media following intracytoplasmic sperm injection.
The present study was carried out to establish porcine defined IVP. In Experiments 1 and 2, we investigated the efficacy of additional 0.6 mM cystine and/or 100 microM cysteamine (Cys) to a defined TCM199 maturation medium with regard to the intracellular glutathione (GSH) concentration and the developmental competence of in vitro matured porcine oocytes following intracytoplasmic sperm injection (ICSI). The control medium was a modified TCM199 containing 0.05% (w/v) polyvinyl alcohol (PVA). Cys and/or cystine were added to the control medium. The control group and immature oocytes (presumptive germinal vesicle oocytes; GV) were prepared for GSH assay. In Experiment 3, the efficacy of epidermal growth factor (EGF) addition to a modified porcine zygote medium (mPZM) for in vitro culture (IVC) medium was investigated on embryonic development and the mean cell number of blastocysts following ICSI. As a positive or negative control, 0.3% BSA (mPZM-3) or 0.3% PVA (mPZM-4), respectively, was added to the base medium. The defined IVC medium was supplemented with 5 or 10 ng/ml EGF. In Experiment 1, no significant difference was found in the rates of cleavage (31.4-64.3%) and blastocyst formation (6.5-22.9%) among the treatment and control groups. The mean cell numbers per blastocyst ranged from 30 to 48 among the groups without significant differences. However, in Experiment 2, the intracellular GSH concentrations in the oocytes cultured in the medium supplemented with 100 microM Cys (9.6 pmol/oocyte) or Cys + cystine (9.9 pmol/oocyte) were significantly (p < 0.05) higher than the control (2.5 pmol/oocyte) and 0.6 mM cystine (6.5 pmol/oocyte) groups, but not different from the GV group (9.0 pmol/oocyte). The GSH concentration in the cystine group was also significantly (p < 0.05) higher than that in the control group, but not different from the GV group. In Experiment 3, the rates of cleavage and blastocyst formation and the mean cell numbers of blastocysts were not significantly different among the groups. However, the addition of 5 ng/ml EGF into the mPZM-4 resulted in a significantly (p < 0.05) higher blastocyst rate per cleaved embryo than the other two defined groups (mPZM-4 + 5 ng/ml: 48.6%, mPZM-4 and mPZM-4 +10 ng/ml: 23.4% and 23.1%, respectively). The present results indicate that the addition of Cys to a defined medium for in vitro maturation (IVM) of porcine oocytes increases intracellular GSH concentration. Further addition of cystine into the IVM medium containing 100 microM Cys is not necessary and TCM199 plus Cys (100 microM) could be used as a defined IVM medium for porcine oocytes. The addition of 5 ng/ml EGF to a defined IVC medium has enhanced subsequent development after ICSI. This study shows that porcine blastocysts can be produced by defined media throughout the steps of IVP (IVM, ICSI and IVC).
Kobayashi M
,Asakuma S
,Fukui Y
《ZYGOTE》