Trans-3'-hydroxycotinine O- and N-glucuronidations in human liver microsomes.

来自 PUBMED

作者:

Yamanaka HNakajima MKatoh MKanoh ATamura OIshibashi HYokoi T

展开

摘要:

Trans-3'-hydroxycotinine is a major metabolite of nicotine in humans and is mainly excreted as O-glucuronide in smoker's urine. Incubation of human liver microsomes with UDP-glucuronic acid produces not only trans-3'-hydroxycotinine O-glucuronide but also N-glucuronide. The formation of N-glucuronide exceeds the formation of O-glucuronide in most human liver microsomes, although N-glucuronide has never been detected in human urine. Trans-3'-hydroxycotinine N-glucuronidation in human liver microsomes was significantly correlated with nicotine and cotinine N-glucuronidations, which are catalyzed mainly by UDP-glucuronosyltransferase (UGT)1A4 and was inhibited by imipramine and nicotine, which are substrates of UGT1A4. Recombinant UGT1A4 exhibited substantial trans-3'-hydroxycotinine N-glucuronosyltransferase activity. These results suggest that trans-3'-hydroxycotinine N-glucuronidation in human liver microsomes would be mainly catalyzed by UGT1A4. In the present study, trans-3'-hydroxycotinine O-glucuronidation in human liver microsomes was thoroughly characterized, since trans-3'-hydroxycotinine O-glucuronide is one of the major metabolites of nicotine. The kinetics were fitted to the Michaelis-Menten equation with a K(m) of 10.0 +/- 0.8 mM and a V(max) of 85.8 +/- 3.8 pmol/min/mg. Among 11 recombinant human UGT isoforms expressed in baculovirus-infected insect cells, UGT2B7 exhibited the highest trans-3'-hydroxycotinine O-glucuronosyltransferase activity (1.1 pmol/min/mg) followed by UGT1A9 (0.3 pmol/min/mg), UGT2B15 (0.2 pmol/min/mg), and UGT2B4 (0.2 pmol/min/mg) at a substrate concentration of 1 mM. Trans-3'-hydroxycotinine O-glucuronosyltransferase activity by recombinant UGT2B7 increased with an increase in the substrate concentration up to 16 mM (10.5 pmol/min/mg). The kinetics by recombinant UGT1A9 were fitted to the Michaelis-Menten equation with K(m) = 1.6 +/- 0.1 mM and V(max) = 0.69 +/- 0.02 pmol/min/mg of protein. Trans-3'-hydroxycotinine O-glucuronosyltransferase activities in 13 human liver microsomes ranged from 2.4 to 12.6 pmol/min/mg and were significantly correlated with valproic acid glucuronidation (r = 0.716, p < 0.01), which is catalyzed by UGT2B7, UGT1A6, and UGT1A9. Trans-3'-hydroxycotinine O-glucuronosyltransferase activity in human liver microsomes was inhibited by imipramine (a substrate of UGT1A4, IC(50) = 55 microM), androstanediol (a substrate of UGT2B15, IC(50) = 169 microM), and propofol (a substrate of UGT1A9, IC(50) = 296 microM). Interestingly, imipramine (IC(50) = 45 microM), androstanediol (IC(50) = 21 microM), and propofol (IC(50) = 41 microM) also inhibited trans-3'-hydroxycotinine O-glucuronosyltransferase activity by recombinant UGT2B7. These findings suggested that trans-3'-hydroxycotinine O-glucuronidation in human liver microsomes is catalyzed by mainly UGT2B7 and, to a minor extent, by UGT1A9.

收起

展开

DOI:

10.1124/dmd.104.001701

被引量:

16

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(16)

来源期刊

DRUG METABOLISM AND DISPOSITION

影响因子:3.575

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读