Quantitative determination of ragaglitazar in rat plasma by HPLC: validation and application in pharmacokinetic study.
A specific, accurate, precise and reproducible high-performance liquid chromatography (HPLC) method was developed for the estimation of ragaglitazar [(-) DRF 2725, NNC 61-0029], a novel anti-diabetic agent, in rat plasma. The assay procedure involved simple liquid/liquid extraction of ragaglitazar and internal standard (IS, troglitazone) from plasma into ethyl acetate. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto a Kromasil KR 100 - 5C(18) column (4.6 x 250 mm, 5 micro m). Mobile phase consisting of 0.01 M potassium dihydorgen ortho phosphate (pH 3.2) and acetonitrile (30:70, v/v) was used at a flow rate of 1.0 mL/min. The eluate was monitored using an UV detector set at 240 nm. Ratio of peak area of analyte to IS was used for quantification of plasma samples. Nominal retention times of IS and ragaglitazar were 6.9 and 12.2 min, respectively. The standard curve for ragaglitazar was linear (r(2) > 0.999) in the concentration range 0.2-100 micro g/mL. Absolute recovery was >87% from rat plasma for both analyte and IS. The lower limit of quantification (LLOQ) of ragaglitazar was 0.2 micro g/mL. The inter- and intra-day precision in the measurement of quality control (QC) samples, 0.2, 1.0, 5.0 and 50 micro g/mL, were in the range 1.32-3.70% relative standard deviation (RSD) and 1.19-9.39% RSD, respectively. Accuracy in the measurement of QC samples was in the range 94.28-107.45%. Analyte and IS were stable in the battery of stability studies, viz. benchtop, autosampler and freeze/thaw cycles. Stability of ragaglitazar was established for 1 month at -20 degrees C. The application of the assay to a pharmacokinetic study in rats is described.
Kota J
,Mullangi R
,Mamidi RN
,Rajagopalan R
... -
《BIOMEDICAL CHROMATOGRAPHY》
Determination of rosuvastatin in rat plasma by HPLC: Validation and its application to pharmacokinetic studies.
A specific, accurate, precise and reproducible high-performance liquid chromatography (HPLC) method was developed for the estimation of rosuvastatin (RST), a novel, synthetic and potent HMG-CoA inhibitor in rat plasma. The assay procedure involved simple liquid-liquid extraction of RST and internal standard (IS, ketoprofen) from a small plasma volume directly into acetonitrile. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto a Kromasil KR 100-5C18 column (4.6 x 250 mm, 5 microm). Mobile phase consisting of 0.05 m formic acid and acetonitrile (55:45, v/v) was used at a flow rate of 1.0 mL/min for the effective separation of RST and IS. The detection of the analyte peak was achieved by monitoring the eluate using a UV detector set at 240 nm. The ratio of peak area of analyte to IS was used for quantification of plasma samples. Nominal retention times of RST and IS were 8.6 and 12.5 min, respectively. The standard curve for RST was linear (r2 > 0.999) in the concentration range 0.02-10 microg/mL. Absolute recoveries of RST and IS were 85-110 and >100%, respectively, from rat plasma. The lower limit of quantification (LLOQ) of RST was 0.02 microg/mL. The inter- and intra-day precisions in the measurement of quality control (QC) samples, 0.02, 0.06, 1.6 and 8.0 microg/mL, were in the range 7.24-12.43% relative standard deviation (RSD) and 2.28-10.23% RSD, respectively. Accuracy in the measurement of QC samples was in the range 93.05-112.17% of the spiked nominal values. Both analyte and IS were stable in the battery of stability studies, viz. benchtop, autosampler and freeze-thaw cycles. RST was found to be stable for a period of 30 days on storage at -80 degrees C. The application of the assay to determine the pharmacokinetic disposition after a single oral dose to rats is described.
Kumar TR
,Shitut NR
,Kumar PK
,Vinu MC
,Kumar VV
,Mullangi R
,Srinivas NR
... -
《BIOMEDICAL CHROMATOGRAPHY》
Validation of a simple HPLC method for DRF-4848, a novel COX-2 inhibitor suitable for pharmacokinetic application in rats.
For pharmacokinetic and toxicokinetic purpose a simple HPLC-UV method has been developed and validated for the estimation of DRF-4848, a novel COX-2 inhibitor in rat plasma. A liquid-liquid extraction was used to extract DRF-4848 and internal standard (IS, DRF-4367) from rat plasma. The analysis was performed on a C(18) column with UV detection at 285 nm. The isocratic mobile phase, 0.01 M potassium dihydrogen ortho phosphate (pH 3.2) and acetonitrile (50:50, v/v) was run at a flow rate of 1 mL/min. The retention times of DRF-4848 and IS were 6.8 and 11.2 min, respectively. Absolute recovery for analyte and IS was >80% from rat plasma. A linear response was observed over a concentration range 0.1-20 microg/mL. The lower limit of quantification (LLOQ) of DRF-4848 was 0.1 microg/mL. The inter- and intra-day precisions in the measurement of quality control (QC) samples, 0.1, 0.3, 8.0 and 15.0 microg/mL, were in the range 1.74-8.70% relative standard deviation (RSD) and 0.75-8.43% RSD, respectively. Accuracy in the measurement of QC samples was in the range 93.29-116.51% of the nominal values. Analyte and IS were stable in the battery of stability studies viz., benchtop, autosampler, long-term and freeze/thaw cycles.
Kallem RR
,Trivedi RK
,Mullangi R
,Srinivas NR
... -
《BIOMEDICAL CHROMATOGRAPHY》
Simultaneous quantitation of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide and celecoxib in plasma by high-performance liquid chromatography with UV detection.
A specific, accurate, precise and reproducible high performance liquid chromatography (HPLC) method was developed and validated for the simultaneous quantitation of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide and celecoxib in human plasma. The method employed a simple liquid-liquid extraction of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide and celecoxib and internal standard (IS, DRF-4367) from human plasma (500 microL) into acetonitirile. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The residue was reconstituted in the mobile phase and injected onto a Kromasil KR 100-5C18 column (4.6 x 250 mm, 5 microm). The chromatographic separation was achieved by gradient elution consisting of 0.05 M formic acid (pH 3)-acetonitrile-methanol-water at a flow rate of 1.0 mL/min. The eluate was monitored using an ultraviolet (UV) detector set at 235 nm. The ratio of peak area of each analyte to IS was used for quantification of plasma samples. Nominal retention times of etoricoxib, salicylic acid, valdecoxib, ketoprofen, nimesulide, IS and celecoxib were 15.63, 17.20, 21.66, 24.95, 26.27, 30.24 and 32.22 min, respectively. The standard curve for etoricoxib, salicylic acid, valdecoxib, ketoprofen and celecoxib was linear (r2 > 0.999) in the concentration range 0.1-50 microg/mL and for nimesulide (r2 > 0.999) in the concentration range 0.5-50 microg/mL. Absolute recovery was >83% from human plasma for all the analytes and IS. The lower limit of quantification (LLOQ) of nimesulide was 0.5 microg/mL and for etoricoxib, salicylic acid, valdecoxib, ketoprofen and celecoxib the LLOQ was 0.1 microg/mL. The inter- and intra-day precisions in the measurement of QC samples, 0.1, 0.3, 15.0 and 40.0 microg/mL (for all analytes except nimesulide), were in the range 2.29-9.37% relative standard deviation (RSD) and 0.69-10.28% RSD, respectively. For nimesulide the inter- and intra-day precisions in the measurement of quality control (QC) samples, 0.5, 1.5, 15.0 and 40.0 microg/mL, were in the range 3.21-7.37% RSD and 0.97-7.06% RSD, respectively. Accuracy in the measurement of QC samples for all analytes was in the range 91.03-106.38% of the nominal values. All analytes including IS were stable in the battery of stability studies, viz. bench top, autosampler and freeze-thaw cycles. Stability of all analytes was established for 21 days at -20 degrees C. The application of the assay in an oral pharmacokinetic study in rats co-administered with celecoxib and valdecoxib is described.
Pavan Kumar VV
,Vinu MC
,Ramani AV
,Mullangi R
,Srinivas NR
... -
《BIOMEDICAL CHROMATOGRAPHY》