Increased expression of cyclo-oxygenase 2 and vascular endothelial growth factor in lesioned spinal cord by transplanted olfactory ensheathing cells.

来自 PUBMED

作者:

López-Vales RGarcía-Alías GForés JNavarro XVerdú E

展开

摘要:

Olfactory ensheathing cells (OECs) were transplanted in adult rats after photochemical injury of the spinal cord. Rats received either 180,000 OECs suspended in DMEM or DMEM alone. Locomotor ability scored by the BBB-scale, pain sensibility, and motor and somatosensory evoked potentials were evaluated during the first 14 days post-surgery. At 3, 7, and 14 days, 5 rats per day of both groups were perfused and transverse sections from proximal, lesioned and distal spinal cord blocks were stained for COX-2, VEGF, GFAP and lectin. The BBB-score and the amplitude of motor and somatosensory evoked potentials were significantly higher in OEC- than in DMEM-injected animals throughout follow-up, whereas the withdrawal latency to heat noxious stimulus was lower in OEC- than in DMEM-injected rats. The area of preserved spinal cord and the levels of COX-2 and VEGF staining were significantly higher in OEC- than in DMEM-injected rats. GFAP- but no LEC-positive cells expressed COX-2 staining in OEC-transplanted rats. The density of blood vessels was also significantly increased in OEC- with respect to DMEM-injected rats. Our results show that OECs promote functional and morphological preservation of the spinal cord after photochemical injury, increasing neoangiogenesis and up-regulation of COX-2 and VEGF expression in astrocytes.

收起

展开

DOI:

10.1089/0897715041651105

被引量:

22

年份:

2004

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(246)

参考文献(0)

引证文献(22)

来源期刊

JOURNAL OF NEUROTRAUMA

影响因子:4.864

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读