Mitogenic signalling by B2 bradykinin receptor in epithelial breast cells.

来自 PUBMED

作者:

Greco SMuscella AElia MGRomano SStorelli CMarsigliante S

展开

摘要:

The kinin peptides are released during inflammation and are amongst the most potent known mediators of vasodilatation, pain, and oedema. A role in the modulation or induction of healthy breast tissue growth has been postulated for tissue kallikrein present in human milk. Moreover, tissue kallikrein was found in malignant human breast tissue and bradykinin (BK) stimulates the proliferation of immortalised breast cancer cells. Aim of the present article was to investigate whether BK also exerts mitogenic activity in normal breast epithelial cells and partially characterise the signalling machinery involved. Results show that BK increased up to 2-fold the 24 h proliferation of breast epithelial cells in primary culture, and that the BK B2 receptor (not B1) inhibitor alone fully blocked the BK response. Intracellular effects of B2 stimulation were the following: (a) the increase of free intracellular Ca(2+) concentration by a mechanism dependent upon the phospholipase C (PLC) activity; (b) the cytosol-to-membrane translocation of conventional (PKC)-alpha and -beta isozymes, novel PKC-delta, -epsilon, and -eta isozymes; (c) the phosphorylation of the extracellular-regulated kinase 1 and 2 (ERK1/2); and (d) the stimulation of the expression of c-Fos protein. EGF, a well known stimulator of cell proliferation, regulated the proliferative response in human epithelial breast cells to the same extent of BK. The effects of BK on proliferation, ERK1/2 phosphorylation, and c-Fos expression were abolished by GF109203X, which inhibits PKC-delta isozyme. Conversely, Gö6976, an inhibitor of PKC-alpha and -beta isozymes, and the 18-h treatment of cells with PMA, that led to the complete down-regulation of PKC-alpha, -beta, -epsilon, and -eta, but not of PKC-delta, did not have any effect, thereby indicating that the PKC-delta mediates the mitogenic signalling of BK. Phosphoinositide 3-kinase (PI3K), tyrosine kinase of the epidermal growth factor receptor (EGFR), and mitogen activated protein kinase kinases (MEK) inhibitors were also tested. The results suggest that EGFR, PI3K, and ERK are required for the proliferative effects of BK. In addition, the BK induced cytosol-to-membrane translocation of PKC-delta was blocked by PI3K inhibition, suggesting that PI3K is upstream to PKC-delta. In conclusion, BK has mitogenic actions in cultured human epithelial breast cells; the activation of PKC-delta through B2 receptor acts in concert with ERK and PI3K pathways to induce cell proliferation.

收起

展开

DOI:

10.1002/jcp.20052

被引量:

11

年份:

2004

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1280)

参考文献(0)

引证文献(11)

来源期刊

JOURNAL OF CELLULAR PHYSIOLOGY

影响因子:6.506

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读