Molecular mechanisms for apigenin-induced cell-cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells.

来自 PUBMED

作者:

Shukla SGupta S

展开

摘要:

Development of effective agents for treatment of hormone-refractory prostate cancer has become a national medical priority. We have reported recently that apigenin (4',5,7-trihydroxyflavone), found in many common fruits and vegetables, has shown remarkable effects in inhibiting cell growth and inducing apoptosis in many human prostate carcinoma cells. Here we demonstrate the molecular mechanism of inhibitory action of apigenin on androgen-refractory human prostate carcinoma DU145 cells that have mutations in the tumor suppressor gene p53 and pRb. Treatment of cells with apigenin resulted in a dose- and time-dependent inhibition of growth, colony formation, and G1 phase arrest of the cell cycle. This effect was associated with a marked decrease in the protein expression of cyclin D1, D2, and E and their activating partner, cyclin-dependent kinase (cdk)2, 4, and 6, with concomitant upregulation of WAF1/p21, KIP1/p27, INK4a/p16, and INK4c/p18. The induction of WAF1/p21 and its growth inhibitory effects by apigenin appears to be independent of p53 and pRb status of these cells. Apigenin treatment also resulted in alteration in Bax/Bcl2 ratio in favor of apoptosis, which was associated with the release of cytochrome c and induction of apoptotic protease-activating factor-1 (Apaf-1). This effect was found to result in a significant increase in cleaved fragments of caspase-9, -3, and poly(ADP-ribose) polymerase (PARP). Further, apigenin treatment resulted in downmodulation of the constitutive expression of nuclear factor-kappaB (NF-kappaB)/p65 and NF-kappaB/p50 in the nuclear fraction that correlated with an increase in the expression of IkappaB-alpha (IkappaBalpha) in the cytosol. Taken together, we concluded that molecular mechanisms during apigenin-mediated growth inhibition and induction of apoptosis in DU145 cells was due to (1) modulation in cell-cycle machinery, (2) disruption of mitochondrial function, and (3) NF-kappaB inhibition.

收起

展开

DOI:

10.1002/mc.10168

被引量:

29

年份:

2004

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(158)

参考文献(0)

引证文献(29)

来源期刊

MOLECULAR CARCINOGENESIS

影响因子:5.134

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读