Bayesian analysis of multilocus association in quantitative and qualitative traits.
摘要:
A Bayesian model-based method for multilocus association analysis of quantitative and qualitative (binary) traits is presented. The method selects a trait-associated subset of markers among candidates, and is equally applicable for analyzing wide chromosomal segments (genome scans) and small candidate regions. The method can be applied in situations involving missing genotype data. The number of trait loci, their marker positions, and the magnitudes of their gene effects (strengths of association) are all estimated simultaneously. The inference of parameters is based on their posterior distributions, which are obtained through Markov chain Monte Carlo simulations. The strengths of the approach are: 1) flexible use of oligogenic models with unknown number of loci, 2) performing the estimation of association jointly with model selection, and 3) avoidance of the multiple testing problem, which typically complicates the approaches based on association testing. The performance of the method was tested and compared to the multilocus conditional search procedure by analyzing two simulated data sets. We also applied the method to cystic fibrosis haplotype data (two-locus haplotypes), where gene position has already been identified. The method is implemented as a software package, which is freely available for research purposes under the name BAMA.
收起
展开
DOI:
10.1002/gepi.10257
被引量:
年份:
2003


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(220)
参考文献(0)
引证文献(22)
来源期刊
影响因子:2.342
JCR分区: 暂无
中科院分区:暂无