A score for Bayesian genome screening.

来自 PUBMED

作者:

Daw EWWijsman EMThompson EA

展开

摘要:

Bayesian Monte Carlo Markov chain (MCMC) techniques have shown promise in dissecting complex genetic traits. The methods introduced by Heath ([1997], Am. J. Hum. Genet. 61:748-760), and implemented in the program Loki, have been able to localize genes for complex traits in both real and simulated data sets. Loki estimates the posterior probability of quantitative trait loci (QTL) at locations on a chromosome in an iterative MCMC process. Unfortunately, interpretation of the results and assessment of their significance have been difficult. Here, we introduce a score, the log of the posterior placement probability ratio (LOP), for assessing oligogenic QTL detection and localization. The LOP is the log of the posterior probability of linkage to the real chromosome divided by the posterior probability of linkage to an unlinked pseudochromosome, with marker informativeness similar to the marker data on the real chromosome. Since the LOP cannot be calculated exactly, we estimate it in simultaneous MCMC on both real and pseudochromosomes. We investigate empirically the distributional properties of the LOP in the presence and absence of trait genes. The LOP is not subject to trait model misspecification in the way a lod score may be, and we show that the LOP can detect linkage for loci of small effect when the lod score cannot. We show how, in the absence of linkage, an empirical distribution of the LOP may be estimated by simulation and used to provide an assessment of linkage detection significance.

收起

展开

DOI:

10.1002/gepi.10230

被引量:

11

年份:

2003

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(210)

参考文献(0)

引证文献(11)

来源期刊

GENETIC EPIDEMIOLOGY

影响因子:2.342

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读