Cyclic ADP-ribose contributes to contraction and Ca2+ release by M1 muscarinic receptor activation in coronary arterial smooth muscle.
摘要:
The present study determined the role of cyclic ADP-ribose (cADPR) in mediating vasoconstriction and Ca(2+) release in response to the activation of muscarinic receptors. Endothelium-denuded small bovine coronary arteries were microperfused under transmural pressure of 60 mm Hg. Both acetylcholine (ACh; 1 nmol/L to 1 micromol/L) and oxotremorine (OXO; 2.5-80 micromol/L) produced a concentration-dependent contraction. The vasoconstrictor responses to both ACh and OXO were significantly attenuated by nicotinamide (Nicot; an ADP-ribosyl cyclase inhibitor), 8-bromo-cADPR (8-Br-cADPR; a cADPR antagonist) or ryanodine (Ry; an Ry receptor antagonist). Intracellular Ca(2+) ([Ca(2+)](i)) was determined by fluorescence spectrometry using fura-2 as a fluorescence indicator. OXO produced a rapid increase in [Ca(2+)](i) in freshly isolated single coronary arterial smooth muscle cells (CASMCs) bathed with Ca(2+)-free Hanks' solution. This OXO-induced rise in [Ca(2+)](i) was significantly reduced by pirenzepine (PIR; an M(1) receptor-specific blocker), Nicot, 8-Br-cADPR or Ry. The effects of OXO on the activity of ADP-ribosyl cyclase (cADPR synthase) were examined in cultured CASMCs by measuring the rate of cyclic GDP- ribose (cGDPR) formation from beta-nicotinamide guanine dinucleotide. It was found that OXO produced a concentration-dependent increase in the production of cGDPR. The stimulatory effect of OXO on ADP-ribosyl cyclase was inhibited by both PIR and Nicot. These results suggest that the cADPR signaling pathway participates in the contraction of small coronary arterial smooth muscle and Ca(2+) release induced by activation of M(1) muscarinic receptors.
收起
展开
DOI:
10.1159/000068936
被引量:
年份:
2003


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(252)
参考文献(0)
引证文献(18)
来源期刊
影响因子:2.043
JCR分区: 暂无
中科院分区:暂无