Genetic divergence in cellular resistance to heat shock in cattle: differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures.
The detrimental effects of heat stress on fertility in cattle are less pronounced in heat-tolerant breeds. Although these genetic differences reflect differences in thermoregulation, cells from heat-tolerant breeds are less adversely compromised by increased temperature (that is, heat shock) than cells from heat-sensitive breeds. Experiments were performed to test the hypothesis that cells and tissues from two thermotolerant breeds (Brahman and Senepol) are better able to survive and function after exposure to increased temperature than cells and tissues from two thermosensitive breeds (Holstein and Angus). Exposure of embryos at>eight-cell stage at day 5 after insemination to heat shock of 41.0 degrees C for 6 h decreased development to the blastocyst stage and the number of cells per embryo. However, the deleterious effect of heat shock on blastocyst formation and the number of cells per embryo was less pronounced for Brahman than for Holstein and Angus breeds. Embryos from Senepol cows had very low development and it was not possible to determine heat shock effects in this breed. In contrast to the sensitivity of embryos to heat shock, there was no effect of a 41.0 degrees C heat shock on [(3)H]leucine incorporation into proteins secreted by oviductal or endometrial explants. Lymphocytes from Brahman and Senepol cows were more resistant to heat-induced apoptosis than lymphocytes from other breeds. Heat shock reduced lymphocyte glutathione content but the magnitude of the decrease was not affected by breed. In conclusion, embryos from Brahman cows are more resistant to heat shock than embryos from Holstein or Angus cows. Genetic differences are also present in thermotolerance for apoptosis response in lymphocytes, with Brahman and Senepol cattle being more resistant to heat shock than Angus and Holstein breeds. It is likely that the evolutionary forces that led to the Brahman and Senepol breeds being adapted to hot climates resulted in the selection of genes controlling resistance to cellular heat shock.
Paula-Lopes FF
,Chase CC Jr
,Al-Katanani YM
,Krininger CE 3rd
,Rivera RM
,Tekin S
,Majewski AC
,Ocon OM
,Olson TA
,Hansen PJ
... -
《REPRODUCTION》
Differences in heat tolerance between preimplantation embryos from Brahman, Romosinuano, and Angus breeds.
Exposure to 41 degrees C reduces development of embryos of heat-sensitive breeds (Holstein and Angus) more than for embryos of the heat-tolerant Brahman breed. Here it was tested whether embryonic resistance to heat shock occurs for a thermotolerant breed of different genetic origin than the Brahman. In particular, the thermal sensitivity of in vitro produced embryos of the Romosinuano, a Bos taurus, Criollo-derived breed, was compared to that for in vitro produced Brahman and Angus embryos. At d 4 after insemination, embryos > or = 8 cells were randomly assigned to control (38.5 degrees C) or heat shock (41 degrees C for 6 h) treatments. Heat shock reduced the proportion of embryos that developed to the blastocyst stage on d 8 after insemination. At 38.5 degrees C, there were no significant differences in development between breeds. Among embryos exposed to 41 degrees C, however, development was lower for Angus embryos than for Brahman and Romosinuano embryos. Furthermore, an Angus vs. (Brahman + Romosinuano) x temperature interaction occurred because heat shock reduced development more in Angus (30.3 +/- 4.6% at 38.5 degrees C vs. 4.9 +/- 4.6% at 41 degrees C) than in Brahman (25.1 +/- 4.6% vs. 13.6 +/- 4.6%) and Romosinuano (28.3 +/- 4.1% vs. 17.5 +/- 4.1%). Results demonstrate that embryos from Brahman and Romosinuano breeds are more resistant to elevated temperature than embryos from Angus. Thus, the process of adaptation of Brahman and Romosinuano breeds to hot environments resulted in both cases in selection of genes controlling thermotolerance at the cellular level.
Hernández-Cerón J
,Chase CC Jr
,Hansen PJ
《JOURNAL OF DAIRY SCIENCE》
Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus, and Hereford cattle in Florida.
Two trials were conducted with heifers to determine heat tolerance among temperate Bos taurus (Angus, Hereford), Bos indicus (Brahman), tropical Bos taurus (Senepol, Romosinuano), and the reciprocal crosses of Hereford and Senepol. Differences among breeds in temperament score, circulating concentrations of cortisol, and blood packed cell volume were also investigated. Trial 1 used 43 Angus, 28 Brahman, 12 Hereford, 23 Romosinuano, 16 Senepol, 5 Hereford x Senepol (H x S), and 5 Senepol x Hereford (S x H) heifers. Trial 2 used 36 Angus, 31 Brahman, 9 Hereford, 14 Senepol, 19 H x S, and 10 S x H heifers. On the hottest summer date in Trial 1, rectal temperature of Angus was greater (P < .001) than that of Brahman, Senepol, or Romosinuano. Rectal temperature and plasma cortisol were significantly less in Senepol than in Brahman, suggesting that the differences in rectal temperature between these breeds may be due to differences in stress response possibly related to differences in temperament. Reciprocal crosses of Hereford and Senepol had rectal temperatures nearly as low as that of Senepol and displayed substantial heterosis (-9.4%, P < .05) in log10 rectal temperature on the hottest summer date. On both the hottest and coolest dates in Trial 1, Angus heifers had significantly faster respiration rates than Brahman, Romosinuano, or Senepol heifers, and Brahman had significantly slower respiration rates than Romosinuano or Senepol. On the hottest summer date in Trial 2, rectal temperature in Angus heifers was greater (P < .001) than in Brahman or Senepol had rectal temperatures similar to that of Senepol, or heterosis for log10 rectal temperature was similar to that in Trial 1 (-9.8%, P < .05). Considering rank order among breeds, Brahman always had the slowest respiration rate and greatest packed cell volume. Brahman had significantly greater temperament scores and plasma cortisol concentrations than Angus or Senepol, except that plasma cortisol was not different between Brahman and Senepol on the hottest summer date. On this date, rectal temperature did not differ between Brahman and Senepol, which supports the hypothesis that there is a relationship between response to stress and rectal temperature that helps explain differences in rectal temperature between Brahman and Senepol. The results of these trials demonstrate heat tolerance of the Senepol and Romosinuano, two Bos taurus breeds. Furthermore, the results suggest a substantial level of dominance of the Senepol's ability to maintain constant body temperature in a hot environment as measured by rectal temperature in crosses with a non-adapted breed.
Hammond AC
,Olson TA
,Chase CC Jr
,Bowers EJ
,Randel RD
,Murphy CN
,Vogt DW
,Tewolde A
... -
《JOURNAL OF ANIMAL SCIENCE》
Differences between Brahman and Holstein cows in response to estrus synchronization, superovulation and resistance of embryos to heat shock.
Embryos from Bos indicus are more resistant to elevated culture temperature (i.e. heat shock) than embryos from some Bos taurus breeds. The present experiment was designed to determine if Brahman embryos have greater resistance to heat shock than Holstein embryos at a stage in development before the embryonic genome was fully activated. A second objective was to test breed effects on estrus synchronization and superovulation responses. A total of 29 Brahman and 24 Holstein cows were subjected to estrus synchronization using gonadotropin releasing hormone (GnRH) and prostaglandin F2alpha (PGF2alpha) superovulation. Embryos were collected at 48 h and day 5 after insemination. There was a tendency for a lower proportion of Brahmans to be detected in standing estrus than Holsteins. There were no differences between breeds in the proportion of cows detected in estrus using both tailpaint and standing estrus as criteria or in interval from PGF2alpha to estrus. The degree of synchrony in estrus was greater for Brahmans. Superovulation response was generally similar between breeds. At 48 h after insemination, there was a tendency for a greater proportion of Brahman oocytes to have undergone cleavage. Uncleaved oocytes were cultured for an additional 24 h-at this time, cleavage rate was similar between breeds. When embryos reached the 2-4-cell stage, they were heat-shocked for 4.5 h at 41 degrees C. This heat shock reduced the proportion of embryos that developed to the blastocyst stage but there was no breedxtreatment interaction. At day 5 after insemination, the number of embryos recovered was too low to allow comparison of breed effects. In conclusion, genetic effects on cellular thermotolerance that make Brahman embryos more resistant to heat shock are not expressed at the 2-4-cell stage. There were few differences between Brahman and Holstein in response to estrus synchronization and superovulation. The fact that cleavage tended to occur earlier in Brahman than Holstein embryos suggests breed differences in timing of ovulation, fertilization or events leading to cleavage.
Krininger CE 3rd
,Block J
,Al-Katanani YM
,Rivera RM
,Chase CC Jr
,Hansen PJ
... -
《ANIMAL REPRODUCTION SCIENCE》
Responses of bovine lymphocytes to heat shock as modified by breed and antioxidant status.
We tested whether resistance of lymphocytes to heat stress is modified by breed, intracellular glutathione content, and extracellular antioxidants. In the first experiment, lymphocytes from Angus (Bos taurus, non-heat-tolerant), Brahman (B. indicus, heat-tolerant), and Senepol (B. taurus, heat-tolerant) heifers (12 heifers per breed) were cultured at 45 degrees C for 3 h to evaluate thermal killing, at 42 degrees C for 12 h in a 60-h phytohemagglutinin-induced proliferation test, and at 42 degrees C for 1 h to measure induction of heat shock protein 70 (HSP70). Killing at 45 degrees C was affected by breed x temperature (P < .01); the decrease in viability caused by a temperature of 45 degrees C was greater for Angus than for Brahman or Senepol. For phytohemagglutinin-stimulated lymphocytes, heating to 42 degrees C reduced [3H]thymidine incorporation equally for all breeds. Viability at the end of culture was affected (P < .001) by a breed x temperature interaction because the decrease in viability caused by culture at 42 degrees C was greatest for lymphocytes from Angus heifers. Heat shock for 1 h at 42 degrees C caused a two- to threefold increase in intracellular concentrations of HSP70, but there was no interaction of temperature with breed. In another experiment (with lymphocytes harvested from three Holstein cows), buthionine sulfoximine, a glutathione synthesis inhibitor, inhibited (P < .01) proliferation of phytohemagglutinin-stimulated lymphocytes at 38.5 and 42 degrees C. Addition of the antioxidants glutathione or thioredoxin to culture did not reduce the effects of heating to 42 degrees C on proliferation.(ABSTRACT TRUNCATED AT 250 WORDS)
Kamwanja LA
,Chase CC Jr
,Gutierrez JA
,Guerriero V Jr
,Olson TA
,Hammond AC
,Hansen PJ
... -
《JOURNAL OF ANIMAL SCIENCE》