On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci.

来自 PUBMED

作者:

Garner CSlatkin M

展开

摘要:

Association studies depend on linkage disequilibrium (LD) between a causative mutation and linked marker loci. Selecting markers that give the best chance of showing useful levels of LD with the causative mutation will increase the chances of successfully detecting an association. This report examines the variation in the extent of LD between a disease locus and one or two diallelic marker loci (termed single nucleotide polymorphisms or SNPs). We use a simulation method based on the neutral coalescent in a population of variable size to find the distribution of LD as a function of allele frequencies, the recombination rate, and the population history. Given that LD exists, the allele frequencies determine if a site will be useful for detecting an association with the disease mutation. We show that there is extensive variation in LD even for closely linked loci, implying that several markers may be needed to detect a disease locus. The distribution of LD between common variants is strongly influenced by ancestral population size. We show that in general, best results will be obtained if the frequencies of marker alleles are at least as large as the frequency of the causative mutation. Haplotypes of two or more SNPs generally have a higher probability than individual SNPs of showing useful LD with a disease mutation, although exceptions are described.

收起

展开

DOI:

10.1002/gepi.10217

被引量:

15

年份:

2003

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1173)

参考文献(0)

引证文献(15)

来源期刊

GENETIC EPIDEMIOLOGY

影响因子:2.342

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读