Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea.

来自 PUBMED

作者:

Langer PGründer SRüsch A

展开

摘要:

Voltage-activated K(+) channels are important for shaping the receptor potentials of cochlear hair cells. In particular, the functional maturation of inner hair cells in mice around the onset of hearing coincides with the expression of a large, fast K(+) conductance, probably mediated by Ca(2+)-activated K(+) (BK) channels. In hearing organs of lower vertebrates, frequency tuning depends on BK-type K(+) channels with different kinetics. Kinetics are varied by alternative splicing of the channels' alpha subunits and combination with modulating beta subunits. It is unclear whether similar mechanisms "fine tune" mammalian hair cells. We used various polymerase chain reaction (PCR) approaches to screen rat cochleae for splice variants of BK-type alpha subunits. We isolated mainly minimal variants and only occasionally splice variants with additional inserts. We conclude that alpha subunits with different kinetics are not substantially used in the rat cochlea. However, we isolated six variants differing in their extreme C-terminal sequences, which may be involved in the targeting of the channel protein. By using reverse transcriptase-PCR, we demonstrated also the expression of transcripts for several beta subunits. In situ hybridization experiments revealed strict coexpression of alpha with beta1 transcripts. In inner hair cells, strong labeling emerged shortly before the onset of hearing. Labeling of outer hair cells appeared later and generally weaker. Thus, our molecular data confirm electrophysiological results that suggested that BK channels underlie the large K(+) conductance in inner hair cells of mammals. Extensive splicing of BK channel transcripts, however, does not seem to be used in mammalian hair cells as is done in lower vertebrates.

收起

展开

DOI:

10.1002/cne.10471

被引量:

42

年份:

2003

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(448)

参考文献(0)

引证文献(42)

来源期刊

JOURNAL OF COMPARATIVE NEUROLOGY

影响因子:3.025

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读