Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea.
摘要:
Voltage-activated K(+) channels are important for shaping the receptor potentials of cochlear hair cells. In particular, the functional maturation of inner hair cells in mice around the onset of hearing coincides with the expression of a large, fast K(+) conductance, probably mediated by Ca(2+)-activated K(+) (BK) channels. In hearing organs of lower vertebrates, frequency tuning depends on BK-type K(+) channels with different kinetics. Kinetics are varied by alternative splicing of the channels' alpha subunits and combination with modulating beta subunits. It is unclear whether similar mechanisms "fine tune" mammalian hair cells. We used various polymerase chain reaction (PCR) approaches to screen rat cochleae for splice variants of BK-type alpha subunits. We isolated mainly minimal variants and only occasionally splice variants with additional inserts. We conclude that alpha subunits with different kinetics are not substantially used in the rat cochlea. However, we isolated six variants differing in their extreme C-terminal sequences, which may be involved in the targeting of the channel protein. By using reverse transcriptase-PCR, we demonstrated also the expression of transcripts for several beta subunits. In situ hybridization experiments revealed strict coexpression of alpha with beta1 transcripts. In inner hair cells, strong labeling emerged shortly before the onset of hearing. Labeling of outer hair cells appeared later and generally weaker. Thus, our molecular data confirm electrophysiological results that suggested that BK channels underlie the large K(+) conductance in inner hair cells of mammals. Extensive splicing of BK channel transcripts, however, does not seem to be used in mammalian hair cells as is done in lower vertebrates.
收起
展开
DOI:
10.1002/cne.10471
被引量:
年份:
2003


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(448)
参考文献(0)
引证文献(42)
来源期刊
影响因子:3.025
JCR分区: 暂无
中科院分区:暂无