Prognostic significance of p27KIP1 expression in resected non-small cell lung cancers: analysis in combination with expressions of p16INK4A, pRB, and p53.

来自 PUBMED

作者:

Hirabayashi HOhta MTanaka HSakaguchi MFujii YMiyoshi SMatsuda H

展开

摘要:

Whether a prognostic role for expression of the tumor suppressor gene (TSG) products exists in resected non-small call lung cancers (NSCLCs) remains controversial. Our study was performed to determine the value of TSGs expressions for patients survival in NSCLCs. We examined 108 resected NSCLCs for the expression of TSG products, p27(KIP1), p16(INK4A), pRB, and p53 that govern cell cycle transition by immunohistochemistry and compared them with patient clinical characteristics and prognoses. Abnormal expressions of p27(KIP1), p16(INK4A), pRB, and p53 were found in 61 (57%), 53 (49%), 42 (39%), and 48 (44%), respectively, of the 108 NSCLCs. Univariate analysis showed abnormal expression of p27(KIP1) to be a strong indicator for poor patient survival, not only in the total cohort (P = 0.0024), but also in subgroups with T1-T2 (P = 0.016), N0 (P = 0.047), and squamous cell carcinomas (P = 0.026), but not according to the expression of p16(INK4A), pRB, or p53. In the Cox regression analysis, p27(KIP1) expression was found to be an independent prognostic factor (P = 0.0148) and associated with pathological stage (P = 0.0278). Our results suggest that abnormal p27(KIP1) expression may be a useful indicator to predict postoperative prognosis, especially in patients with early stage NSCLCs, as compared to other TSG products examined.

收起

展开

DOI:

10.1002/jso.10176

被引量:

8

年份:

2002

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(315)

参考文献(0)

引证文献(8)

来源期刊

JOURNAL OF SURGICAL ONCOLOGY

影响因子:2.882

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读