Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress.

来自 PUBMED

作者:

Piro SAnello MDi Pietro CLizzio MNPatanè GRabuazzo AMVigneri RPurrello MPurrello F

展开

摘要:

We investigated the effect of a chronic exposure to high levels of free fatty acid (FFA; 2 mmol/L oleate/palmitate 2:1) or glucose (16.7 mmol/L) on islet cell apoptosis. Apoptosis was detected using 4 different methods: (1) cell staining with annexin-V fluorescien isothiocyanate (FITC) conjugate and propidium iodide (PI); (2) quantification of cytoplasmatic DNA fragments by an enzyme-linked immunosorbent assay (ELISA); (3) assay of caspase 3 activity; and (4) TdT-mediated dUTP nick-end labeling (TUNEL). Islet cells were also costained with an anti-insulin antibody to identify apoptotic beta cells. We also evaluated by reverse-transcriptase polymerase chain reaction (RT-PCR) the expression of bax, bcl-2, and caspas 3, genes involved in apoptosis. In islets cultured for 7 days in the presence of high FFA or for 3 days in the presence of high glucose levels, we observed: (1) a 2- to 3-fold increase of apoptotic cells conjugated with annexin-V FITC and PI; (2) a 4- to 6-fold increase of cytoplasmatic DNA fragments; (3) a 3- to 4-fold increase of caspase 3 activity; and (4) a significant increase of insulin positive apoptotic cells as detected with the TUNEL method. RT-PCR analysis indicated in islets exposed to high FFA or glucose levels an increase of bax (proapoptotic gene), a reduction of bcl-2 (antiapoptotic gene), and a slight (although not significant) increase in caspase 3 expression. Western blot analysis also showed an increase of Bax protein levels in islets exposed to high FFA or glucose. The simultaneous presence of both metabolic abnormalities did not further increase the amount of apoptotic cells, although the time-course of the cellular damage induced by FFA was accelerated by the contemporary presence of high glucose. To elucidate the mechanism by which FFA and glucose may induce pancreatic beta-cell damage, we examined whether nicotinamide prevents apoptosis in pancreatic islets cultured for 7 days with high FFA or for 3 days with high glucose. Nicotinamide was able to prevent beta-cell damage by significantly reducing apoptosis in both experimental conditions. Also, the increase of Bax protein level was prevented by nicotinamide. These data indicate that chronic exposure to elevated FFA or glucose levels increases apoptosis in rat pancreatic islets and these cytotoxic effects could be mediated by oxidative stress. This may contribute to the beta-cell failure that occurs in most in type 2 diabetic patients few years after clinical diabetes onset.

收起

展开

DOI:

10.1053/meta.2002.35200

被引量:

72

年份:

2002

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(472)

参考文献(0)

引证文献(72)

来源期刊

METABOLISM-CLINICAL AND EXPERIMENTAL

影响因子:13.92

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读