Activation of Ca(2+)-dependent proteolysis in skeletal muscle and heart in cancer cachexia.

来自 PUBMED

作者:

Costelli PDe Tullio RBaccino FMMelloni E

展开

摘要:

Cachexia is a syndrome characterized by profound tissue wasting that frequently complicates malignancies. In a cancer cachexia model we have shown that protein depletion in the skeletal muscle, which is a prominent feature of the syndrome, is mostly due to enhanced proteolysis. There is consensus on the views that the ubiquitin/proteasome pathway plays an important role in such metabolic response and that cytotoxic cytokines such as TNFalpha are involved in its triggering (Costelli and Baccino, 2000), yet the mechanisms by which the relevant extracellular signals are transduced into protein hypercatabolism are largely unknown. Moreover, little information is presently available as to the possible involvement in muscle protein waste of the Ca(2+)-dependent proteolysis, which may provide a rapidly activated system in response to the extracellular signals. In the present work we have evaluated the status of the Ca(2+)-dependent proteolytic system in the gastrocnemius muscle of AH-130 tumour-bearing rats by assaying the activity of calpain as well as the levels of calpastatin, the natural calpain inhibitor, and of the 130 kDa Ca(2+)-ATPase, both of which are known calpain substrates. After tumour transplantation, total calpastatin activity progressively declined, while total calpain activity remained unchanged, resulting in a progressively increasing unbalance in the calpain/calpastatin ratio. A decrease was also observed for the 130 kDa plasma membrane form of Ca(2+)-ATPase, while there was no change in the level of the 90 kDa sarcoplasmic Ca(2+)-ATPase, which is resistant to the action of calpain. Decreased levels of both calpastatin and 130 kDa Ca(2+)-ATPase have been also detected in the heart of the tumour-bearers. These observations strongly suggest that Ca(2+)-dependent proteolysis was activated in the skeletal muscle and heart of tumour-bearing animals and raise the possibility that such activation may play a role in sparking off the muscle protein hypercatabolic response that characterizes cancer cachexia.

收起

展开

DOI:

10.1054/bjoc.2001.1696

被引量:

34

年份:

2001

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(172)

参考文献(40)

引证文献(34)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读