Effect of redox modulation on xenogeneic target cells: the combination of nitric oxide and thiol deprivation protects porcine endothelial cells from lysis by IL-2-activated human NK cells.
摘要:
:Evidence suggests that NK cells contribute to the pathogenesis of delayed rejection of vascularized xenografts, and NK cells have been suggested to participate in hyperacute xenograft rejection. Endothelial cells have been shown to be the primary target of the recipient's immune responses that mediate both hyperacute and delayed xenograft rejection. Under conditions of oxidative stress induced by thiol deprivation, but not under normal conditions, pretreatment of porcine aortic endothelial cells (PAECs) with the NO donor, S-nitroso-N-acetyl-penicillamine, dramatically inhibited killing of PAEC target cells by IL-2-activated human NK cells. This same combined treatment reduced both surface expression and mRNA levels of E-selectin. Moreover, anti-E-selectin mAb, but not Ab to VCAM-1, protected PAEC from lysis by human IL-2-activated NK cells in a dose-dependent manner. These findings suggest that expression of porcine E-selectin is important for the cytotoxicity of PAEC mediated by activated human NK cells and may be involved in the redox-mediated modulation of that cytotoxicity. It is known that NF-kappa B activation is required for transcription of E-selectin, and the current data show that the suppression of E-selectin expression by S-nitroso-N-acetyl-penicillamine pretreatment and thiol deprivation was associated with reduced NF-kappa B DNA-binding activity in PAEC. These data suggest that the regulation of porcine E-selectin may be important for modulating delayed xenograft rejection and that manipulation of cellular redox systems may provide a means to protect xenogeneic endothelial cells from NK cell-mediated cytotoxicity.
收起
展开
DOI:
10.4049/jimmunol.166.6.4106
被引量:
年份:
2001


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(266)
参考文献(0)
引证文献(0)
来源期刊
影响因子:5.421
JCR分区: 暂无
中科院分区:暂无