Detrimental effect of cancer preventive phytochemicals silymarin, genistein and epigallocatechin 3-gallate on epigenetic events in human prostate carcinoma DU145 cells.

来自 PUBMED

作者:

Bhatia NAgarwal R

展开

摘要:

Targeting epigenetic events associated with autonomous growth of advanced prostate cancer (PCA) is a practical approach for its control, prevention, and treatment. Recently we showed that treatment of prostate carcinoma DU145 cells with cancer preventive flavonoid silymarin at 100-200 microM doses inhibits erbB1-Shc mitogenic signaling and modulates cell cycle regulators leading to a G1 arrest and inhibition of cell growth and anchorage-independent colony formation. Here, we asked the question whether these important findings could be extended to other cancer preventive flavonoids and isoflavones such as epigallocatechin 3-gallate (EGCG) and genistein. DU145 cells were treated with similar doses (100-200 microM) of silymarin, genistein or EGCG, cell lysates prepared, and levels of activated signaling molecules (erbB1-Shc-ERK1/2) and cell cycle regulators (CDKIs, CDKs, and cyclins) analyzed employing immunoprecipitation and/or immunoblotting techniques. Cell growth studies were done by cell counting during 5 days of treatment with these agents, and cell death was determined by Trypan blue staining. Treatment of cells with silymarin, genistein or EGCG at 100-200 microM resulted in a complete inhibition of TGFalpha-caused activation of erbB1 followed by a moderate to strong inhibition (10-90%) of Shc activation without an alteration in their protein levels. Silymarin and genistein, but not EGCG, also inhibited (10% to complete) ERK1/2 activation suggesting that these agents impair erbB1-Shc-ERK1/2 signaling in DU145 cells. In other studies, silymarin, genistein or EGCG caused a strong induction of Cip1/p21 (up to 2.4-fold) and Kip1/p27 (up to 150-fold), and a strong decrease in CDK4 (40-90%) but had moderate effect on CDK2, and cyclins D1 and E. An enhanced level of CDKIs also led to an increase in their binding to CDK4 and CDK2. Treatment of cells with silymarin, genistein or EGCG also resulted in 50-80% cell growth inhibition at lower doses, and complete inhibition at higher doses. In contrast to silymarin, higher doses of genistein showed cytotoxic effect causing 30-40% cell death. A more profound cytotoxic effect was observed with EGCG accounting for 50% cell death at lower doses and complete loss of viability at higher doses. These results suggest that similar to silymarin, genistein and EGCG also inhibit mitogenic signaling pathway(s) and alter cell cycle regulators, albeit at different levels, leading to growth inhibition and death of advanced and androgen-independent prostate carcinoma cells. More studies are, therefore, needed with these agents to explore their anti-carcinogenic potential against human prostate cancer.

收起

展开

DOI:

10.1002/1097-0045(20010201)46:2<98::aid-pros1013>3.0.co;2-k

被引量:

21

年份:

2001

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(216)

参考文献(0)

引证文献(21)

来源期刊

PROSTATE

影响因子:4.008

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读