Enhanced Ca2+ channel currents in cardiac hypertrophy induced by activation of calcineurin-dependent pathway.
摘要:
:Cardiac-specific expression of an activated calcineurin protein in the hearts of transgenic (CLN) mice produces a profound hypertrophy that rapidly progresses to heart failure. While calcineurin is regulated by Ca2+, the potential effects of calcineurin on cardiac myocyte Ca2+ handling has not been evaluated. To this end, we examined L-type Ca2+ currents (I(Ca)) in left ventricular myocytes. CLN myocytes had larger (approximately 80%) cell capacitance and enhanced I(Ca) density (approximately 20%) compared with non-transgenic (NTG) littermates, but no change in the current-voltage relationship, single-channel conductance or protein levels of alpha 1 or beta 2 subunit of L-type Ca2+ channels. Interestingly, the kinetics of I(Ca) inactivation was faster (approximately two-fold) in CLN myocytes compared with NTG myocytes. Ryanodine application slowed the rate of I(Ca) inactivation in both groups and abolished the kinetic difference, suggesting that Ca2+ dependent inactivation is increased in CLN myocytes due to altered SR Ca2+ release. Treatment of CLN mice with Cyclosporine A (CsA), a calcineurin inhibitor, prevented myocyte hypertrophy and changes in I(Ca) activity and inactivation kinetics. However, there was no direct effect of CsA on I(Ca) in either NTG or CLN myocytes, suggesting that endogenous calcineurin activity does not directly regulate Ca2+ channel activity. This interpretation is consistent with the observation that I(Ca) density, inactivation kinetics and regulation by isoproterenol were normal in cardiac-specific transgenic mice expressing calcineurin inhibitory protein domains from either Cain or AKAP79. Taken together these data suggest that chronic activation of calcineurin is associated with myocyte hypertrophy and a secondary enhancement of intracellular Ca2+ handling that is tied to the hypertrophy response itself.
收起
展开
DOI:
10.1006/jmcc.2000.1296
被引量:
年份:
2001


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(158)
参考文献(0)
引证文献(18)
来源期刊
影响因子:5.757
JCR分区: 暂无
中科院分区:暂无