Catecholaminergic regulation of Na-K-Cl cotransport in pigmented ciliary epithelium: differences between PE and NPE.

来自 PUBMED

作者:

Hochgesand DHDunn JJCrook RB

展开

摘要:

Pigmented (PE) and nonpigmented (NPE) ciliary epithelial cells comprise the ciliary epithelium, the site of aqueous humor formation in the eye. In man, catecholamines increase the rate of aqueous humor formation, but the mechanism underlying these effects is not understood. Recent evidence suggests that Na-K-Cl cotransport plays a central role in blood-to-aqueous chloride transport across ciliary epithelium in cow and rabbit. We therefore investigated whether catecholamines stimulate Na-K-Cl cotransport in human PE cells. Na-K-Cl cotransporter protein was detected as a 170 kDa protein band on immunoblots. Immunofluorescence microscopy detected cotransporter on the basolateral membranes of the PE layer of ciliary epithelium from a human donor. Cotransporter immunofluorescence was also detected in cultured PE cells. Na-K-Cl cotransport activity measured as ouabain-insensitive bumetanide-sensitive(86)Rb uptake was stimulated by isoproterenol 1.6-fold, with an EC(50) = 28 n M and maximal stimulation at 1 microM. Other transport mechanisms involved in(86)Rb uptake were not affected. Stimulation by 1 microM isoproterenol was blocked by 10 n M ICI 118,551, a beta(2)-specific receptor antagonist, whereas the receptor subtype-specific antagonists yohimbine (alpha(2)), prazosin (alpha(1)) and atenolol (beta(1)) were ineffective. Norepinephrine stimulation (EC(50) = 280 n M) was also blocked by ICI 118,551. Dopamine stimulated Na-K-Cl cotransport 1.6-fold with an EC(50) = 14 microM. The dopamine effect could not be blocked by 10 microM SCH 23390, a D1-antagonist, but was abolished by ICI 118,551. Forskolin and CPT-cAMP stimulated Na-K-Cl cotransport 1.79- and 1.71-fold, respectively, whereas the inactive forskolin analogue 1,9-dideoxyforskolin had no effect. However, high concentrations of the PKA inhibitors PKI amide 14-22 and KT 5720 were needed to inhibit both PKA activity in cell lysates and isoproterenol stimulation of cotransport. This finding may indicate the presence of a novel PKA isoform in PE cells. Inhibitors of other protein kinases, including myosin light chain kinase, protein kinase G, calmodulin-dependent kinase and tyrosine kinase, were without effect on stimulated Na-K-Cl cotransport. When EC(50)s for catecholaminergic stimulations of Na-K-Cl cotransport in PE were compared to those in NPE, values within five-fold of one another were seen for isoproterenol and norepinephrine. In contrast, dopamine was 28-fold more potent in NPE than in PE. The data suggest that both PE and NPE possess beta(2)adrenergic receptors, but only NPE cells possess dopamine D1 receptors linked to Na-K-Cl cotransport.

收起

展开

DOI:

10.1006/exer.2000.0927

被引量:

9

年份:

2001

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(390)

参考文献(0)

引证文献(9)

来源期刊

EXPERIMENTAL EYE RESEARCH

影响因子:3.766

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读