Defects in adhesion and migration, but not in proliferation and differentiation, of embryonic stem cells upon replacement of integrin subunit beta1A by beta1D.

来自 PUBMED

作者:

Gimond CBaudoin CSonnenberg A

展开

摘要:

:Beta1D is a skeletal muscle-specific splice variant of the beta1 integrin subunit, while beta1A integrin subunit has a wide tissue distribution. We have previously shown that replacement of beta1A by beta1D by homologous recombination (knockin) in all mouse tissues was embryonic lethal. Through two successive rounds of homologous recombination, we have now produced embryonic stem (ES) cells expressing beta1D instead of beta1A, and analyzed the ability of beta1D to support ES cell differentiation in vitro and in teratomas in vivo. Beta1D knockin (KI) ES cells grew at a similar rate but as more compact colonies than the beta1A-expressing cells. Increased cell cohesiveness, however, did not appear to involve changes in cadherin activity. Although in both beta1A and beta1D-KI ES cells only one beta1 allele is active; the expression of beta1 integrins in the beta1D-KI ES cells was reduced by 50%, compared with that in the beta1A-expressing cells; this correlated with impaired adhesive and migratory capacities. It appeared that during in vitro cardiac differentiation, in spite of a slight delay in the induction of two cardiac-specific transcripts, the alpha- and beta-myosin heavy chains, contracting cardiomyocytes were detected in similar numbers and at the same time in embryoid bodies (EB) derived from beta1D-KI and from beta1A cells. Furthermore, replacement of beta1A by beta1D in ES cells did not affect neurite differentiation in embryoid bodies in the presence of retinoic acid suggesting that beta1D supports neurogenesis. However, the impaired migration of other cells from the EB, including endodermal cells, prevented the normal outgrowth of neurites in beta1D-KI EB. Finally, injection of beta1D-KI ES cells in the flank of syngeneic mice gave rise to fully developed teratomas containing simple and pluristratified epithelia, muscle, cartilage, blood vessels, and tissues from the neural lineage. These results show that the muscle-specific splice variant beta1D, in spite of its specific cytoplasmic domain, supports the differentiation of many cell types. This further suggests that the embryonic lethality in the beta1D-KI embryos was mainly due to the different ability of beta1 A and beta1D to mediate cell adhesion and migration.

收起

展开

DOI:

10.1046/j.1432-0436.2000.660204.x

被引量:

3

年份:

2000

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(102)

参考文献(0)

引证文献(3)

来源期刊

DIFFERENTIATION

影响因子:3.529

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读