Enhanced drug resistance in cells coexpressing ErbB2 with EGF receptor or ErbB3.

来自 PUBMED

作者:

Chen XYeung TKWang Z

展开

摘要:

Overexpression of ErbB2 has been found in approximately 25-30% of human breast cancers and has been shown to render the cancer cells more resistant to chemotherapy. However, it is not clear whether ErbB2 overexpression renders the cells more resistant to specific anti-cancer drugs or renders the cells more resistant to a broad range of anti-cancer drugs. It is not clear how the function of ErbB2 in drug resistance is related to expression and activation of the other ErbB receptors. In this communication, we showed that several breast cancer cell lines including BT20, BT474, MCF-7, MDA-MB-453, and SKBR-3 cells had a similar pattern of resistance to a broad range of anti-cancer drugs including 5-Fluorouracil, Cytoxan, Doxorubincin, Taxol, and Vinorelbin, suggesting a mechanism of multidrug resistance. High expression of P-glycoprotein and the ErbB receptors contribute to drug resistance of these breast cancer cells; however, overexpression of ErbB2 alone is not a major factor in determining drug resistance. To further determine the role of the ErbB receptors in drug resistance, we selected various NIH 3T3 cell lines that specifically expressed EGF receptor (EGFR), ErbB2, ErbB3, EGFR/ErbB2, EGFR/ErbB3, or ErbB2/ErbB3. A cytotoxicity assay showed that expression of ErbB2 alone did not significantly enhance drug resistance, whereas coexpression of either EGFR or ErbB3 with ErbB2 significantly enhanced drug resistance. Moreover, ErbB2 was highly phosphorylated in NIH 3T3 cells that coexpress ErbB2 with either EGFR or ErbB3, but not in NIH 3T3 cells that express ErbB2 alone. Together, our results suggest that coexpression of EGFR or ErbB3 with ErbB2 induces high phosphorylation of ErbB2 and renders the cells more resistant to various anti-cancer drugs.

收起

展开

DOI:

10.1006/bbrc.2000.3731

被引量:

49

年份:

2000

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(198)

参考文献(0)

引证文献(49)

来源期刊

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

影响因子:3.319

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读