An anion channel in guinea pig gallbladder epithelial cells is highly permeable to HCO(-)(3).
摘要:
In guinea pig gallbladder epithelium, a secretion of fluid, secondary to an electrogenic secretion of Cl(-) and HCO(-)(3), is elicited in the presence of a high intracellular concentration of adenosine 3'-5'-cyclic monophosphate (cAMP). The aim of this study was to analyze the effects of secretagogues on the activity of anionic channels in isolated epithelial cells using the patch-clamp technique and measuring the electrical potential difference of the cellular membrane (pd(cm)). In cell-attached configuration, with the microelectrode filled with a solution of N-methylglucamine-Cl, or in inside-out configuration (symmetrical solution), it was possible to demonstrate the presence of an 18-pS Cl(-) channel with linear current/voltage (I/V) relationship and voltage independence; this channel is not activated by cAMP (cell-attached configuration). In inside-out configuration (symmetrical solution), another anionic channel with a conductance of 2.8 pS, voltage independence, and a linear I/V relationship was also identified. This channel was stimulated by cAMP (cell-attached configuration) and by PKA + ATP + cAMP (inside-out configuration). The channel was inhibited by NPPB (10(-5) M), but not by other anionic inhibitors. Measurements of the pd(cm) value suggested that in isolated cells, as in whole tissue, cAMP activates conductance for both Cl(-) and HCO(-)(3). The selectivity of the channel was gluconate < SO(2-)(4) < Cl(-) < Br(-) < I(-) < HCO(-)(3) < SCN(-) and the P(HCO(3))/P(Cl) was 2.6. Some features of the channel resemble those of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel and RT-PCR performed on mRNA from isolated epithelial cells detected the presence of a CFTR homologue mRNA. The results obtained indicate that this channel is responsible for the HCO(-)(3) conductance activated by cAMP.
收起
展开
DOI:
10.1006/bbrc.2000.3400
被引量:
年份:
2000


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(183)
参考文献(0)
引证文献(2)
来源期刊
影响因子:3.319
JCR分区: 暂无
中科院分区:暂无