Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications.

来自 PUBMED

作者:

Jones MIMcColl IRGrant DMParker KGParker TL

展开

摘要:

The hemocompatibility of a TiN/TiC/diamond-like carbon (DLC) multilayer structure, deposited on titanium substrates for use as coatings for a heart valve prosthesis, has been studied through the adsorption of blood proteins and the adhesion and attachment of blood platelets. All of the surfaces were characterized by stylus profilometry and water contact angles. The adsorption of albumin and fibrinogen to the surfaces was assessed using the Amido Black assay, whereas platelet attachment was studied by scanning electron microscopy and quantified using stereological techniques. The degree of platelet spreading on the surfaces was seen to correlate with differences in surface energy, indicated from contact angle measurements. The greatest spreading was seen on the more hydrophilic surfaces. When studying protein adsorption to the surfaces, no correlation could be determined between contact angle results and levels of adsorption, although the most hydrophilic surfaces did appear to promote greater amounts of fibrinogen adsorption. Thrombus formation was observed to some degree on all of the surfaces, with the exception of the DLC coating. This coating also promoted less spreading of platelets than the other surfaces. The good hemocompatibility of the DLC coating is attributed to its hydrophobicity and smooth surface, resulting in a higher ratio of albumin to fibrinogen than any of the other surfaces.

收起

展开

DOI:

10.1002/1097-4636(200011)52:2<413::aid-jbm23>3.0.co;2-u

被引量:

21

年份:

2000

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(147)

参考文献(0)

引证文献(21)

来源期刊

journal of biomedical materials research

影响因子:0

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读