Changes in the 17 bp spacer in the P(R) promoter of bacteriophage lambda affect steps in open complex formation that precede DNA strand separation.

来自 PUBMED

作者:

McKane MGussin GN

展开

摘要:

Tau plots and temperature-shift experiments were used to determine which step in the formation of transcriptionally-competent open complexes is affected by changing the length of the 17 bp spacer separating the -10 and -35 consensus regions of the P(R) promoter of bacteriophage lambda. Abortive initiation assays at 37 degrees C indicate that the primary effect of insertion of a base-pair, thereby increasing spacer length to 18 bp, is a decrease in k(f), the rate constant for conversion from closed (RP(c)) to open (RP(o)) complexes, by approximately a factor of 4. The mutation did not significantly affect K(B), the equilibrium constant for formation of closed complexes, and decreased K(B)k(f) by a factor of 3. Deletion of a bp to create a 16 bp spacer had a much greater effect, decreasing the measured value of k(f) by a factor of about 25 to 30, and K(B)k(f) by a factor of 7 to 8. When the values of the parameters for the deletion mutant were corrected for incomplete occupancy of RP(o) at equilibrium, the effects of the deletion were even greater. In particular, the corrected value of K(B)k(f) was about 15 times lower than the corresponding value for two promoters with wild-type spacing. Based on temperature shift experiments, the changes in spacer length did not affect the equilibrium at 20 degrees C between RP(i), a stable intermediate in which DNA strands are not separated, and RP(o). Although differential sensitivity of single-stranded bases to KMnO(4) indicated that in about 20% of the open complexes at 20 degrees C the DNA strands are not fully separated (RP(o1)), the distribution between these complexes and RP(o2) (DNA strands fully separated) was also not affected significantly by changes in spacer length. Thus, changes in spacer length primarily affect k(2), the rate constant for conversion of RP(c) to RP(i), which corresponds to a nucleation of DNA strand-separation. Application of published data and/or algorithms for determining effects of nucleotide sequence on twist angle or rise at individual bp steps does not provide a simple explanation of the difference in promoter strength between P(R) derivatives with 16 bp spacing and those with 18 bp spacing.

收起

展开

DOI:

10.1006/jmbi.2000.3757

被引量:

7

年份:

2000

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(252)

参考文献(0)

引证文献(7)

来源期刊

JOURNAL OF MOLECULAR BIOLOGY

影响因子:6.145

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读