The effect of mode, inspiratory time, and positive end-expiratory pressure on partial liquid ventilation.

来自 PUBMED

作者:

Fujino YKirmse MHess DKacmarek RM

展开

摘要:

:Partial liquid ventilation (PLV) has been shown to be an effective means of improving oxygenation in the injured lung. However, little is known about how approach to ventilation during PLV affects gas exchange and pulmonary mechanics. We hypothesized that gas exchange and pulmonary mechanics would be best with positive end-expiratory pressure (PEEP) set above the lower inflection point (LIP) of the pressure-volume (P-V) curve regardless of mode of ventilation or inspiratory to expiratory time (I:E) ratio and that the efficiency of ventilation would be greatest with volume-controlled ventilation (VCV) compared with pressure-controlled ventilation (PCV) and with long inspiratory time as compared with short inspiratory time. Lung injury was induced in 14 sheep by lavage, 10 of which were studied. Sheep were then assigned to high-PEEP (Group H, n = 5) and low-PEEP (Group L, n = 5) groups. In Group H applied PEEP was set at the LIP and in Group L applied PEEP was set at 5 cm H2O after the lung was filled with perflubron (PFB). We randomly compared VCV and PCV with I:E ratios of 1:2, 1:1, and 2:1. Peak inspiratory pressure and VT were adjusted to maintain a constant end-inspiratory plateau pressure (Pplat) of about 25 cm H2O in both groups and a constant total PEEP of about 5 cm H2O in Group L and about 12 cm H2O in Group H. There were no differences in oxygenation among modes in Group H. In Group L VCV 2:1 and all of the PCV modes in Group L had a lower PaO2 than VCV 1:1 (p < 0.05). PaCO2 and VD/VT were significantly different (p < 0.05) among modes. VD/VT was highest during PCV 1:2 with PEEP of 5 cm H2O (p < 0.05). Quasi-static compliance in Group H was higher than in Group L (p < 0.05). We conclude that during low PEEP gas exchange deteriorated in VCV with long inspiratory time and in PCV. Oxygenation was enhanced during VCV 1:1 when compared with VCV at longer I:E ratios or PCV at any I:E ratio. With PEEP set at the LIP, adequate gas exchange and improved lung mechanics could be obtained in all modes assessed.

收起

展开

DOI:

10.1164/ajrccm.159.4.9711021

被引量:

1

年份:

1999

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1510)

参考文献(0)

引证文献(1)

来源期刊

AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE

影响因子:30.497

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读