Trypanosoma rangeli: discrimination from Trypanosoma cruzi based on a variable domain from the large subunit ribosomal RNA gene.

来自 PUBMED

作者:

Souto RPVargas NZingales B

展开

摘要:

306-314. Three synthetic oligonucleotides corresponding to sequences within the D7a divergent domain of the large subunit ribosomal RNA gene have been used to amplify the total DNA of Trypanosoma rangeli and Trypanosoma cruzi, two morphologically similar protozoa with overlapping geographical distribution and hosts. The two organisms may be distinguished by the electrophoretic mobilities of their respective amplification products. For T. rangeli a 210-bp product was obtained. The presence of this fragment was confirmed in 14 T. rangeli strains. For T. cruzi two possible amplification products were originated: a 265-bp DNA fragment for strains typed as lineage 1 and a 250-bp fragment for lineage 2 strains. Eleven unidentified trypanosome stocks, recently isolated from Amazonian vectors, could be discriminated using the proposed assay. The potential field application of multiplex PCR was further demonstrated by identification of the two parasite species in samples containing intestinal tract and feces of triatomines. In the present study we have also amplified the D7a domain of several trypanosomatids employing primers complementary to the conserved flanking regions. Size and sequence polymorphisms were observed, indicating that this region could also be explored as a target for specific detection of other members of the Trypanosomatidae family.

收起

展开

DOI:

10.1006/expr.1998.4380

被引量:

19

年份:

1999

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(381)

参考文献(0)

引证文献(19)

来源期刊

EXPERIMENTAL PARASITOLOGY

影响因子:2.13

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读