Epigenetics & Chromatin
表观遗传学和染色质
ISSN: 1756-8935
自引率: 3.3%
发文量: 79
被引量: 1889
影响因子: 5.46
通过率: 暂无数据
出版周期: 不定期刊
审稿周期: 暂无数据
审稿费用: 0
版面费用: 暂无数据
年文章数: 79
国人发稿量: 1

期刊描述简介:

Epigenetics & Chromatin is a peer-reviewed, open access journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.

最新论文
  • Transcriptional silencing in Saccharomyces cerevisiae: known unknowns.

    被引量:- 发表:1970

  • Transcriptional regulation mechanism of PARP1 and its application in disease treatment.

    Poly (ADP-ribose) polymerase 1 (PARP1) is a multifunctional nuclear enzyme that catalyzes poly-ADP ribosylation in eukaryotic cells. In addition to maintaining genomic integrity, this nuclear enzyme is also involved in transcriptional regulation. PARP1 can trigger and maintain changes in the chromatin structure and directly recruit transcription factors. PARP1 also prevents DNA methylation. However, most previous reviews on PARP1 have focused on its involvement in maintaining genome integrity, with less focus on its transcriptional regulatory function. This article comprehensively reviews the transcriptional regulatory function of PARP1 and its application in disease treatment, providing new ideas for targeting PARP1 for the treatment of diseases other than cancer.

    被引量:- 发表:1970

  • DNA methylation correlates of chronological age in diverse human tissue types.

    被引量:- 发表:1970

  • Long-term exposure to diesel exhaust particles induces concordant changes in DNA methylation and transcriptome in human adenocarcinoma alveolar basal epithelial cells.

    Diesel exhaust particles (DEP), which contain hazardous compounds, are emitted during the combustion of diesel. As approximately one-third of the vehicles worldwide use diesel, there are growing concerns about the risks posed by DEP to human health. Long-term exposure to DEP is associated with airway hyperresponsiveness, pulmonary fibrosis, and inflammation; however, the molecular mechanisms behind the effects of DEP on the respiratory tract are poorly understood. Such mechanisms can be addressed by examining transcriptional and DNA methylation changes. Although several studies have focused on the effects of short-term DEP exposure on gene expression, research on the transcriptional effects and genome-wide DNA methylation changes caused by long-term DEP exposure is lacking. Hence, in this study, we investigated transcriptional and DNA methylation changes in human adenocarcinoma alveolar basal epithelial A549 cells caused by prolonged exposure to DEP and determined whether these changes are concordant. DNA methylation analysis using the Illumina Infinium MethylationEPIC BeadChips showed that the methylation levels of DEP-affected CpG sites in A549 cells changed in a dose-dependent manner; the extent of change increased with increasing dose reaching the statistical significance only in samples exposed to 30 µg/ml DEP. Four-week exposure to 30 µg/ml of DEP significantly induced DNA hypomethylation at 24,464 CpG sites, which were significantly enriched for DNase hypersensitive sites, genomic regions marked by H3K4me1 and H3K27ac, and several transcription factor binding sites. In contrast, 9,436 CpG sites with increased DNA methylation levels were significantly overrepresented in genomic regions marked by H3K27me3 as well as H3K4me1 and H3K27ac. In parallel, gene expression profiling by RNA sequencing demonstrated that long-term exposure to DEP altered the expression levels of 2,410 genes, enriching 16 gene sets including Xenobiotic metabolism, Inflammatory response, and Senescence. In silico analysis revealed that the expression levels of 854 genes correlated with the methylation levels of the DEP-affected cis-CpG sites. To our knowledge, this is the first report of genome-wide transcriptional and DNA methylation changes and their associations in A549 cells following long-term exposure to DEP.

    被引量:- 发表:1970

  • The role of ribosomal DNA methylation in embryonic development, aging and diseases.

    The ribosomal DNA (rDNA) constitutes a remarkably conserved DNA sequence within species, located in the area of the nucleolus, and responsible for coding three major types of rRNAs (18S, 5.8S and 28S). While historical investigations into rDNA focused on its structure and coding capabilities, recent research has turned to explore its functional roles in various biological processes. In this review, we summarize the main findings of rDNA methylation with embryonic development, aging and diseases in multiple species, including epigenetic alterations, related biological processes and potential applications of rDNA methylation. We present an overview of current related research and identify gaps in this field.

    被引量:- 发表:1970

统计分析
是否有问题?您可以直接对期刊官方提问 提问

最近浏览

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读