
自引率: 4.6%
被引量: 21637
通过率: 暂无数据
审稿周期: 2
版面费用: 暂无数据
国人发稿量: 2
投稿须知/期刊简介:
Ecological Applications, published eight times per year, contains ecological research and discussion papers that have specific relevance to environmental management and policy.
-
Tree diversity across the Minneapolis-St. Paul Metropolitan Area in relation to climate and social vulnerability.
被引量:- 发表:1970
-
Quantifying the impact of habitat modifications on species behavior and mortality: A case study of tropical tuna.
Ecosystems and biodiversity across the world are being altered by human activities. Habitat modification and degradation are among the most important drivers of biodiversity loss. These modifications can have an impact on species behavior, which can, in turn, impact their mortality. While several studies have investigated the impacts of habitat degradation and fragmentation on terrestrial species, the extent to which habitat modifications affect the behavior and fitness of marine species is still largely unknown, particularly for pelagic species. Since the early 1990s, industrial purse seine vessels targeting tuna have started deploying artificial floating objects-Drifting Fish Aggregating Devices (DFADs)-in all oceans to increase tuna catchability. Since then, the massive deployment of DFADs has modified tuna surface habitat, by increasing the density of floating objects, with potential impacts on tuna associative behavior and mortality. In this study, we investigate these impacts for yellowfin tuna in the Indian Ocean. Using an individual-based model based on a correlated random walk and newly available data on DFAD densities, we quantify for the first time how the increase in floating object density, due to DFAD use, affects the percentage of time that yellowfin tuna spend associated, which, in turn, directly impacts their availability to fishers and fishing mortality. This modification of tuna associative behavior could also have indirect impacts on their fitness, by retaining tuna in areas detrimental to them or disrupting schooling behavior. Hence, there is an urgent need to further investigate DFAD impacts on tuna behavior, in particular, taking social behavior into account, and to continue regulation efforts on DFAD use and monitoring.
被引量:- 发表:1970
-
Response of stream habitat and microbiomes to spruce budworm defoliation: New considerations for outbreak management.
Defoliation by eastern spruce budworm is one of the most important natural disturbances in Canadian boreal and hemi-boreal forests with annual area affected surpassing that of fire and harvest combined, and its impacts are projected to increase in frequency, severity, and range under future climate scenarios. Deciding on an active management strategy to control outbreaks and minimize broader economic, ecological, and social impacts is becoming increasingly important. These strategies differ in the degree to which defoliation is suppressed, but little is known about the downstream consequences of defoliation and, thus, the implications of management. Given the disproportionate role of headwater streams and their microbiomes on net riverine productivity across forested landscapes, we investigated the effects of defoliation by spruce budworm on headwater stream habitat and microbiome structure and function to inform management decisions. We experimentally manipulated a gradient of defoliation among 12 watersheds during a spruce budworm outbreak in the Gaspésie Peninsula, Québec, Canada. From May through October of 2019-2021, stream habitat (flow rates, dissolved organic matter [DOM], water chemistry, and nutrients), algal biomass, and water temperatures were assessed. Bacterial and fungal biofilm communities were examined by incubating six leaf packs for five weeks (mid-August to late September) in one stream reach per watershed. Microbiome community structure was determined using metabarcoding of 16S and ITS rRNA genes, and community functions were examined using extracellular enzyme assays, leaf litter decomposition rates, and taxonomic functional assignments. We found that cumulative defoliation was correlated with increased streamflow rates and temperatures, and more aromatic DOM (measured as specific ultraviolet absorbance at 254 nm), but was not correlated to nutrient concentrations. Cumulative defoliation was also associated with altered microbial community composition, an increase in carbohydrate biosynthesis, and a reduction in aromatic compound degradation, suggesting that microbes are shifting to the preferential use of simple carbohydrates rather than more complex aromatic compounds. These results demonstrate that high levels of defoliation can affect headwater stream microbiomes to the point of altering stream ecosystem productivity and carbon cycling potential, highlighting the importance of incorporating broader ecological processes into spruce budworm management decisions.
被引量:- 发表:1970
-
Size-dependent effects of dams on river ecosystems and implications for dam removal outcomes.
被引量:- 发表:1970
-
Phenological mismatches mitigate the ecological impact of a biological invader on amphibian communities.
Horizon scans have emerged as a valuable tool to anticipate the incoming invasive alien species (IAS) by judging species on their potential impacts. However, little research has been conducted on quantifying actual impacts and assessing causes of species-specific vulnerabilities to particular IAS due to persistent methodological challenges. The underlying interspecific mechanisms driving species-specific vulnerabilities therefore remain poorly understood, even though they can substantially improve the accuracy of risk assessments. Given that interspecific interactions underlying ecological impacts of IAS are often shaped by phenological synchrony, we tested the hypothesis that temporal mismatches in breeding phenology between native species and IAS can mitigate their ecological impacts. Focusing on the invasive American bullfrog (Lithobates catesbeianus), we combined an environmental DNA (eDNA) quantitative barcoding and metabarcoding survey in Belgium with a global meta-analysis, and integrated citizen-science data on breeding phenology. We examined whether the presence of native amphibian species was negatively related to the presence or abundance of invasive bullfrogs and whether this relationship was affected by their phenological mismatches. The field study revealed a significant negative effect of increasing bullfrog eDNA concentrations on native amphibian species richness and community structure. These observations were shaped by species-specific vulnerabilities to invasive bullfrogs, with late spring- and summer-breeding species being strongly affected, while winter-breeding species remained unaffected. This trend was confirmed by the global meta-analysis. A significant negative relationship was observed between phenological mismatch and the impact of bullfrogs. Specifically, native amphibian species with breeding phenology differing by 6 weeks or less from invasive bullfrogs were more likely to be absent in the presence of bullfrogs than species whose phenology differed by more than 6 weeks with that of bullfrogs. Taken together, we present a novel method based on the combination of aqueous eDNA quantitative barcoding and metabarcoding to quantify the ecological impacts of biological invaders at the community level. We show that phenological mismatches between native and invasive species can be a strong predictor of invasion impact regardless of ecological or methodological context. Therefore, we advocate for the integration of temporal alignment between native and IAS's phenologies into invasion impact frameworks.
被引量:- 发表:1970