JOURNAL OF ELECTROMYOGRAPHY AND KINESIOLOGY
杂志肌电和运动学
ISSN: 1050-6411
自引率: 5.9%
发文量: 95
被引量: 5312
影响因子: 2.638
通过率: 暂无数据
出版周期: 双月刊
审稿周期: 2
审稿费用: 0
版面费用: 暂无数据
年文章数: 95
国人发稿量: 8

投稿须知/期刊简介:

Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of muscle contraction and human motion through combined mechanical and electrical detection techniques. As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics, electrical stimulation, motion analysis, sports and exercise, measures of human performance, and rehabilitation. Months of publication: March, June, September, December. The journal is featured in Biomechanics World Wide.

期刊描述简介:

Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of muscle contraction and human motion through combined mechanical and electrical detection techniques. As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics, electrical stimulation, motion analysis, sports and exercise, measures of human performance, and rehabilitation. Months of publication: March, June, September, December. The journal is featured in Biomechanics World Wide.

最新论文
  • Less Pain, but no changes in maximal inclination angles during an overhead reach task following local anesthetic in patients with ongoing shoulder pain.

    被引量:- 发表:1970

  • Altered muscle fibre activation in an antagonistic muscle pair due to perturbed afferent feedback caused by blood flow restriction.

    This study aimed to better understand the coping strategy of the neuromuscular system under perturbed afferent feedback. To this end, the neuromechanical effects of transient blood flow restriction (BFR) compared to atmospheric pressure were investigated in an antagonistic muscle pair. Perceived discomfort and neuromechanical parameters (torque and high-density electromyography) were recorded during submaximal isometric ankle dorsiflexion before, during and after BFR. The tibialis anterior and gastrocnemius lateralis muscles were studied in 14 healthy young adults. Discomfort increased during BFR and decreased to baseline level afterwards. The exerted torque and the co-activation index remained constant, whereas the EMG signal energy increased significantly during BFR. Coherence analysis of the delta band remained constant, whereas the alpha band shows an increase during BFR. Median frequency and muscle fibre conduction velocity showed a positive trend during the first minutes of BFR before significantly decreasing. Both parameters exceeded baseline values after cuff deflation. Perturbed afferent feedback leads to altered neuromechanical parameters. We assume that increased central drive is required to maintain force output, resulting in changed muscle fibre activity. Glycolytic fast-switch fibres are only active for a short time due to oxygen deprivation and hyperacidity, but fatigue effects predominate in the long term.

    被引量:- 发表:1970

  • Upper arm muscle activity is influenced by both forearm posture and wrist exertion direction during isometric wrist flexion and extension.

    The purpose of this study was to determine how wrist exertion direction and forearm posture independently influence upper arm muscle activity during isometric wrist contractions. Surface electromyography was recorded from three muscles of the upper-limb: biceps brachii, triceps brachii, and brachioradialis. Participants were seated with their forearm supported in one of three postures (supinated/neutral/pronated) with an adjustable force transducer that could be placed either above, below, or to the right/left of the participant's hand. Participants performed randomized trials of isometric wrist flexion or extension at five relative intensities: 20, 40, 60, 80, or 100% of maximal force. Trials lasted 4.5 s and both wrist force and electromyography data were assessed. In general, the elbow flexors were more active during wrist flexion, while the triceps were more active in wrist extension, but this pattern reversed in certain forearm postures and wrist exertion directions. Both forearm posture and wrist exertion direction resulted in unique effects on upper arm muscle activity. These findings suggest that muscle activity of the upper arm muscles is influenced independently by both posture and force direction, which should be carefully considered by both motor control specialists and ergonomists.

    被引量:- 发表:1970

  • Assessing the contribution of different upper limb degrees of freedom to an unconstrained shoulder proprioception task.

    For the purpose of testing shoulder joint proprioception while controlling for axioscapular muscle recruitment, a novel shoulder thoracohumeral (TH) rotation joint position sense (JPS) measurement device was designed. This device was intended to measure shoulder TH rotation, while also implicitly constraining other upper limb degrees of freedom (DOF) and minimizing cutaneous sensation. The purpose of this study was to determine whether joint motion aside from shoulder TH rotation is being captured by the shoulder JPS measurement device. Upper limb kinematics were collected from 32 participants during joint angle matching trials using the shoulder JPS measurement device. Step wise multiple regression revealed that shoulder TH rotation (β-Humeral Rotation = 0.409, p < 0.001), and wrist deviation (β-Wrist Deviation = 0.104, p = 0.008) both contributed a significant unique variance in the prediction of shoulder JPS measurement device rotation. Findings suggest that seated, unconstrained shoulder TH rotation JPS testing protocols in literature may be confounded by contributions from joints both proximal and distal to the shoulder. Researchers should be aware of the limitations of both constrained and unconstrained shoulder TH rotation JPS testing protocols.

    被引量:- 发表:1970

  • Validation of proprioception measures of the lumbar spine.

    To better personalize treatment and monitor recovery of individuals with low back pain, objective tests of sensorimotor functions, such as lumbar proprioception, must be selected based on their reliability and validity. The primary objective of this study was to test the concurrent validity of three measures of lumbar proprioception. Thirty-one participants performed three lumbar proprioception tests (motion perception threshold, active and passive joint positioning sense), a whole-body mobility and balance (time up-and-go) and two trunk-specific postural control (threshold of stability and sensor-based sway measures) tests. Only the motion perception threshold proprioception test showed some validity, correlating with the trunk-specific postural control tests [r range (positive values): 0.37 to 0.60]. The three lumbar proprioception measures were not correlated to each other. The threshold of stability measure was correlated with the time up-and-go (r = 0.37) and trunk-specific (sensor-based sway measures) postural control [r range (positive values): 0.48 to 0.77] tests. The present study generated three original findings. Only the motion perception threshold proprioception test demonstrated its concurrent validity. In fact, the three lumbar proprioception tests performed in the present study were not correlated to each other, thus assessing different constructs. Finally, the threshold of stability protocol was validated against other tests. These findings will help in selecting the most appropriate lumbar proprioception measures to study the effects of exercise treatments in patients with back pain.

    被引量:- 发表:1970

统计分析
是否有问题?您可以直接对期刊官方提问 提问

最近浏览

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读