ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
环境毒理学和化学
ISSN: 0730-7268
自引率: 10.2%
发文量: 245
被引量: 20351
影响因子: 4.214
通过率: 暂无数据
出版周期: 月刊
审稿周期: 2
审稿费用: 0
版面费用: 暂无数据
年文章数: 245
国人发稿量: 41

投稿须知/期刊简介:

Environmental Toxicology and Chemistry is an international journal dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.

期刊描述简介:

Environmental Toxicology and Chemistry is an international journal dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.

最新论文
  • Groundwater Ecotoxicology and Chemistry.

    被引量:- 发表:1970

  • Transformation of Environmental Contaminants: Uncovering Reaction Mechanisms, Identifying Novel Products, and Understanding Environmental Implications.

    被引量:- 发表:1970

  • Corrigendum.

    被引量:- 发表:1970

  • Evaluating the Effects of Diet on the Sensitivity of Hyalella azteca to an "Eco-friendly" Deicing Agent.

    Salting of roadways contaminates local waterways via snowmelt and precipitation runoff, eliciting various toxicological impacts on aquatic ecosystems. Recently, "eco-friendly" deicing alternatives have been introduced in hopes of mitigating environmental impacts of deicing agents, while maintaining human safety. These "eco-friendly" alternatives may pose their own set of environmental concerns that require further study. While the potential toxicity of road salts has been evaluated for various aquatic species, the environmental factors that may influence this toxicity are less understood; and for emerging deicing alternatives, there is a lack of literature documenting these potential implications. For aquatic organisms, the highest exposure to road salts may coincide with reduced food availability, namely during the winter months. The present study evaluates the effect of a conditioning diet on the sensitivity of adult Hyalella azteca to an "eco-friendly"-labeled beet deicer (Snow Joe MELT Beet-IT). Various conditioning diets were examined, including TetraMinTM, TetraMin and diatom (Thalassiosira weissflogii) combinations, and TetraMin and conditioned Acer sacharum leaves. For each diet type, 48- and 96-h water-only toxicity bioassays were conducted with adult H. azteca. These results were compared to organisms which experienced a 96-h starvation period prior to exposure and culture organisms. Diet types representing excess quality and quantity of food significantly decreased the toxicity of beet deicer to the organisms. However, starvation likely increases the toxicity of road salts to H. azteca. Therefore, the quantity and quality of food available to H. azteca may influence their sensitivity to deicing agents. Environ Toxicol Chem 2024;00:1-8. © 2024 SETAC.

    被引量:- 发表:1970

  • Population Modeling in Metal Risk Assessment: Extrapolation of Toxicity Tests to the Population Level.

    Population models can be a useful tool for ecological risk assessment to increase ecological realism. In the present study, population models were used to extrapolate toxicity test results of four metals (Ag, Cu, Ni, Zn) to the population level. In total, three primary producers, five invertebrate species, and five fish species were covered. The ecological modeling-based laboratory to population effect extrapolation factor (ECOPEX factor), defined as the ratio of the predicted 10% effect concentration (EC10) at the population level and the observed EC10 for the laboratory toxicity test, ranged from 0.7 to 78.6, with a median of 2.8 (n = 27). Population modeling indicated clearly higher effect concentrations in most of the cases (ECOPEX factor >2 in 14 out of 27 cases), but in some cases the opposite was observed (in three out of 27 cases). We identified five main contributors to the variability in ECOPEX factors: (1) uncertainty about the toxicity model, (2) uncertainty about the toxicity mechanism of the metal, (3) uncertainty caused by test design, (4) impact of environmental factors, and (5) impact of population endpoint chosen. Part of the uncertainty results from a lack of proper calibration data. Nonetheless, extrapolation with population models typically reduced the variability in EC10 values between tests. To explore the applicability of population models in a regulatory context, we included population extrapolations in a species sensitivity distribution for Cu, which increased the hazardous concentration for 5% of species by a factor 1.5 to 2. Furthermore, we applied a fish population model in a hypothetical Water Framework Directive case using monitored Zn concentrations. This article includes recommendations for further use of population models in (metal) risk assessment. Environ Toxicol Chem 2024;43:2308-2328. © 2024 SETAC.

    被引量:- 发表:1970

统计分析
是否有问题?您可以直接对期刊官方提问 提问

最近浏览

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读