
自引率: 8.9%
被引量: 12436
通过率: 暂无数据
审稿周期: 4.4
版面费用: 暂无数据
国人发稿量: 193
投稿须知/期刊简介:
Applied Biochemistry and Biotechnology, Part A, Enzyme Engineering and Biotechnology presents innovative, practically oriented original research on contemporary biotechnology with a strong emphasis on the applications of genetic engineering and enzyme technology.
期刊描述简介:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
-
Enrichment of Vitamin A and Vitamin E in Sweet Corn Kernels Through Genomics-Assisted Introgression of Mutant Version of crtRB1 and vte4 Genes.
Recessive shrunken2 (sh2)-based sweet corn is preferred worldwide as it possesses higher sugar and extended shelf life. However, traditional sh2-based sweet corn is poor in vitamin A and vitamin E. Here, parental lines of two sh2-based sweet corn hybrids, viz. PSSC-2 and ASKH-2, were targeted for introgression of β-carotene hydroxylase 1 (crtRB1) and γ-tocopherol methyltransferase (vte4) genes through marker-assisted backcross breeding. Seeds with sh2sh2sh2 genotype in the endosperm were selected based on the shrunken phenotype in BC1F1, BC2F1 and BC2F2 generations. Gene-based markers, viz. 3'-TE-InDel and 118-InDel specific for crtRB1 and vte4, respectively, were successfully utilized for foreground selection in BC1F1, BC2F1 and BC2F2. Reconstituted hybrids showed high provitamin A (proA: 19.52 ± 0.52 µg/g) with a maximum of 7.8-fold increase over original hybrids (ASKH-2 and PSSC-2: 3.33 ± 0.28 µg/g). High α-tocopherol (20.75 ± 0.44 µg/g) and α/γ-tocopherol ratio (0.55 ± 0.02) with an average enhancement of 2.3- and 1.7-fold, respectively, was recorded among reconstituted hybrids over original versions (α-tocopherol: 9.21 ± 0.33 µg/g, α/γ-tocopherol ratio: 0.31 ± 0.01). The average yield of reconstituted hybrids (11.40 ± 0.22 t/ha) was at par with the original sweetcorn hybrids (11.60 ± 0.20 t/ha). This is the first report of stacking sh2, crtRB1 and vte4 genes to improve nutritional quality in sweet corn. These biofortified sweet corn hybrids hold immense significance to alleviate micronutrient malnutrition.
被引量:- 发表:1970
-
Gynostemma pentaphyllum (Thunb.) Makino Affects Autophagy and Improves Diabetic Peripheral Neuropathy Through TXNIP-Mediated PI3K/AKT/mTOR Signaling Pathway.
TXNIP is closely associated with diabetic peripheral neuropathy (DPN). Gynostemma pentaphyllum (Thunb.) Makino (GP), a perennial herb with five leaves, is considered to have medicinal values. However, it is unknown whether GP alleviates DPN by modulating TXNIP-mediated autophagy. The aim of this study was to evaluate the effect of GP on Schwann cell injury during DPN and to investigate the mechanism of GP in DPN for the first time. High-fat diet-fed GK rats and high-glucose-cultured RSC96 cells were used to establish DPN models. The effects of GP on DPN were investigated by blood glucose assay, neurological function assay, pathology assay, and immunohistochemistry. To investigate the effect of GP on autophagy and upstream PI3K/AKT/mTOR signaling pathway in Schwann cells, Western blot and immunofluorescence assay were performed on RSC96 cells to detect the expression of beclin-1 and LC3. Western blot method was used to detect the expression of PI3K, p-Akt/Akt, p-mTOR/mTOR, and RT-qPCR method and was used to detect the expression of PI3K. Apoptosis was detected by flow cytometry. The effects of TXNIP on the above indicators were also detected in RSC96 cells. Finally, the mechanism of GP regulation of autophagy and apoptosis in RSC96 cells was verified. GP reduced blood glucose level, attenuated peripheral nerve myelin damage, and improved nerve function in DPN rats. In addition, GP enhanced autophagy activity and reduced apoptosis in RSC96 cells. GP promoted autophagy by regulating TXNIP-mediated PI3K/AKT/mTOR signaling pathway, and GP reduced apoptosis in RSC96 cells by promoting cellular autophagy. GP attenuates DPN myelin damage in RSC96 cells by enhancing autophagy, and its mechanism may be related to the inhibition of PI3K/AKT/mTOR signaling pathway by up-regulating the expression of TXNIP.
被引量:- 发表:1970
-
A Self-Powered Enzymatic Glucose Sensor Utilizing Bimetallic Nanoparticle Composites Modified Pencil Graphite Electrodes as Cathode.
Enzymatic biofuel cells (EBFC) are promising sources of green energy owing to the benefits of using renewable biofuels, eco-friendly biocatalysts, and moderate operating conditions. In this study, a simple and effective EBFC was presented using an enzymatic composite material-based anode and a nonenzymatic bimetallic nanoparticle-based cathode respectively. The anode was constructed from a glassy carbon electrode (GCE) modified with a multi-walled carbon nanotube (MWCNT) and ferrocene (Fc) as a conductive layer coupled with the enzyme glucose oxidase (GOx) as a sensitive detection layer for glucose. A chitosan layer was also applied to the electrode as a protective layer to complete the composite anode. Chronoamperometry (CA) results show that the MWCNT-Fc-GOx/GCE electrode has a linear relationship between current and glucose concentration, which varied from 1 to 10 mM. The LOD and LOQ were calculated for anode as 0.26 mM and 0.87 mM glucose, respectively. Also the sensitivity of the proposed sensor was calculated as 25.71 μ A/mM. Moreover, the studies of some potential interferants show that there is no significant interference for anode in the determination of glucose except ascorbic acid (AA), uric acid (UA), and dopamine (DA). On the other hand, the cathode consisted of a disposable pencil graphite electrode (PGE) modified with platinum-palladium bimetallic nanoparticles (Nps) which exhibit excellent conductivity and electron transfer rate for the oxygen reduction reaction (ORR). The constructed EBFC was optimized and characterized using various electroanalytical techniques. The EBFC consisting of MWCNT-Fc-GOx/GCE anode and Pt-PdNps/PGE cathode exhibits an open circuit potential of 285.0 mV and a maximum power density of 32.25 µW cm-2 under optimized conditions. The results show that the proposed EBFC consisting of an enzymatic composite-based anode and bimetallic nanozyme-based cathode is a unique design and a promising candidate for detecting glucose while harvesting power from glucose-containing natural or artificial fluids.
被引量:- 发表:1970
-
Investigating the antioxidant potential and mechanism of a hydrazide bioactive component of garlic: insights from density functional theory calculations, drug-likeness and molecular docking studies.
被引量:- 发表:1970
-
Effect of the Digestibility of Cassava Flour (Manihot esculenta Crantz) by Enzymes Extracted from Corn Malt.
被引量:- 发表:1970