自引率: 5.5%
被引量: 7022
通过率: 暂无数据
审稿周期: 1.75
版面费用: 暂无数据
国人发稿量: 46
投稿须知/期刊简介:
NeuroToxicology specialises in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasises papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds. Papers dealing with the effects of neurotoxicants on other systems (e.g. reproductive, endocrine, immune) or processes (e.g. metabolic) are also welcome.
期刊描述简介:
NeuroToxicology specialises in publishing the best peer-reviewed original research papers dealing with the effects of toxic substances on the nervous system of humans and experimental animals of all ages. The Journal emphasises papers dealing with the neurotoxic effects of environmentally significant chemical hazards, manufactured drugs and naturally occurring compounds. Papers dealing with the effects of neurotoxicants on other systems (e.g. reproductive, endocrine, immune) or processes (e.g. metabolic) are also welcome.
-
Unraveling the effects of prenatal anesthesia on neurodevelopment: A review of current evidence and future directions.
被引量:- 发表:1970
-
Sex-specific effects on elements of the social brain neural network in Wistar rats from perinatal exposure to FireMaster 550 or its components.
Developmental exposure to chemical flame retardants (FRs) has been linked to a variety of neurodevelopmental disorders and abnormal socioemotional behaviors in human and laboratory animal studies. We have previously shown in Wistar rats that gestational and lactational exposure to the FR mixture Firemaster 550 (FM 550) or its brominated or organophosphate ester (OPFR) components (at 2000 µg, 1000 µg, and 1000 µg oral to the dam respectively (absolute and not by bodyweight)) results in increased anxiety-like behaviors in females and decreased sociality in both sexes. Using their siblings, this study characterized sex and chemical specific targets of disruption in brain regions underlying each behavioral phenotype. Offspring were exposed across gestation and lactation then prepared for either immunohistochemistry or autoradiography at postnatal day 90 to quantify expression of serotonin, estrogen receptor α (ERα), and oxytocin receptor (OTR) in multiple brain regions. No effect of exposure was found in males for any biological target. In females, serotonin innervation was increased in the medial amygdala of FM 550 exposed animals while ERα expression in the bed nucleus of the stria terminalis (BNST) was reduced by FM 550 and OPFR. Evidence of disrupted OTR was observed in males, particularly the BNST but considered an exploratory finding given the small sample size. These results begin to shed light on the mechanisms by which developmental FR exposure alters socioemotional behaviors of relevance to neurodevelopmental disorders.
被引量:- 发表:1970
-
BBPT attenuated 6-OHDA-induced toxicity by modulating oxidative stress, apoptotic, and inflammatory proteins in primary neurons and rat models of Parkinson's disease.
Parkinson's disease (PD) results from the degeneration of dopaminergic neurons in substantia nigra pars compacta (SNpc). Adenosine A2AR acting through the striato-pallidal pathway has emerged as a non-dopaminergic target in the therapy of PD. In the present work, the anti-parkinsonian potential of (4E)-4-(4-bromobenzylideneamino)-3-phenyl-2,3-dihydro-2-thioxo- thiazole-5-carbonitrile (BBPT) was explored. BBPT exhibited significant antioxidant activity in situ. In the MTT assay, the BBPT treatment showed insignificant toxicity to the primary midbrain neuronal (PMDN) cells. 6-OHDA induced PMDN cells, 3 h post-treated with BBPT showed 80-85 % survival of the cells and restoration of dopamine and TNF-α levels. The acute and sub-acute toxicity test for BBPT was performed with Sprague Dawley (SD) rats. In toxicity assay, any significant physical, hematological, or biochemical changes in the rats were not observed. To evaluate the effect of BBPT in vivo, a 6-OHDA-induced unilaterally lesioned SD rat model of PD was established. We observed that the BBPT treatment improved the behavioral symptoms in 6-OHDA-induced unilaterally lesioned rats. The proteins of 6-OHDA-induced BBPT-treated rats were isolated from the brain tissue to assess the antioxidant effect (GSH, catalase, SOD, lipid-peroxidation, nitrite), dopamine levels, and the restoration in the apoptosis and inflammation. Our results demonstrated that BBPT increased the anti-oxidant enzyme levels, restored the caspase-3/Bcl-2 levels to arrest apoptosis, and attenuated the TNF-α/IL-6 levels, thus restoring the neuronal damage in unilaterally lesioned 6-OHDA-induced SD rats. Precisely, the findings suggested that BBPT possessed significant anti-parkinsonian activity and has the potential to prevent dopaminergic neurodegeneration.
被引量:- 发表:1970
-
Neurobehavioral toxicity of Cold plasma activated water following oral gavage in mice.
Cold plasma-activated water (PAW) is a novel technology that was recently used in biomedical research; Despite its potential, PAW's safety remains inadequately assessed. The study explores the impact of PAW on behavioral responses and brain tissue histopathology in mice. Ten-week-old female albino mice were divided into three groups each containing 10 mice (5 replicates, 2 mice/cage) and received either distilled water (DW), or distilled water exposed to cold atmospheric plasma (CAP) for 3 min (PAW-3), or 15 min (PAW-15) by oral gavage in a dose of 200 μL/mice (3 times/week) for four weeks. PAW exhibited altered physicochemical properties compared to DW. Mice exposed to PAW demonstrated reduced burrowing activity, marble burying ability, and novel object recognition compared to controls, indicating potential neurobehavioral alterations. PAW-treated groups displayed notable histological lesions in brain tissues, including nerve cell necrosis, vascular congestion, and Purkinje cell degeneration, confirming neurotoxic effects. Positive reactions for NF-κB and iNOS in brain tissues of PAW-treated mice corroborated the histopathological findings, suggesting neuroinflammation and oxidative stress. The study highlights the need for further investigation into PAW's safety profile and optimal treatment protocols to mitigate potential neurobehavioral toxicity in biomedical research.
被引量:- 发表:1970
-
Cerium oxide nanoparticles (nanoceria) pretreatment attenuates cell death in the hippocampus and cognitive dysfunction due to repeated isoflurane anesthesia in newborn rats.
General anesthetics exposure, particularly prolonged or repeated exposure, is a crucial cause of neurological injuries. Notably, isoflurane (ISO), used in pediatric anesthesia practice, is toxic to the developing brain. The relatively weak antioxidant system at early ages needs antioxidant support to protect the brain against anesthesia. Cerium oxide nanoparticles (CeO2-NPs, nanoceria) are nano-antioxidants and stand out due to their unique surface chemistry, high stability, and biocompatibility. Although CeO2-NPs have been shown to exhibit neuroprotective and cognitive function-facilitating effects, there are no reports on their protective effects against anesthesia-induced neurotoxicity and cognitive impairments. Herein, Wistar albino rat pups were exposed to ISO (1.5 %, 3-h) at postnatal day (P)7+P9+P11, and the protective properties of CeO2-NP pretreatment (0.5 mg/kg, intraperitoneal route) were investigated for the first time. The control group at P7+9+11 received 50 % O2 (3-h) instead of ISO. Exposure to nanoceria one-hour before ISO protected hippocampal neurons of the developing rat brain against apoptosis [determined by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) analysis with caspase-3, and immunoblotting with Bax/Bcl2, cleaved caspase-3 and PARP1] oxidative stress, and inflammation [determined by immunoblotting with 4-hydroxynonenal (4HNE), nuclear factor kappa-B (NF-κB), and tumor necrosis factor-alpha (TNF-α)]. CeO2-NP pretreatment also reduced ISO-induced learning (at P28-32) and memory (at P33) deficits evaluated by Morris Water Maze. However, memory deficits and thigmotactic behaviors were detected in the agent-control group; elimination of these harmful effects will be possible with dose studies, thus providing evidence supporting safer use. Overall, our findings support pretreatment with nanoceria application as a simple strategy that might be used for pediatric anesthesia practice to protect infants and children from ISO-induced cell death and learning and memory deficits.
被引量:- 发表:1970